Applying the Experiences of Radio Astronomy to Mid-IR Interferometry Bill Cotton, NRAO

Outline:

- Similarities between mid-IR and radio interferometry.
- Differences between mid-IR and radio interferometry.

• Useful techniques/experience from radio interferometry

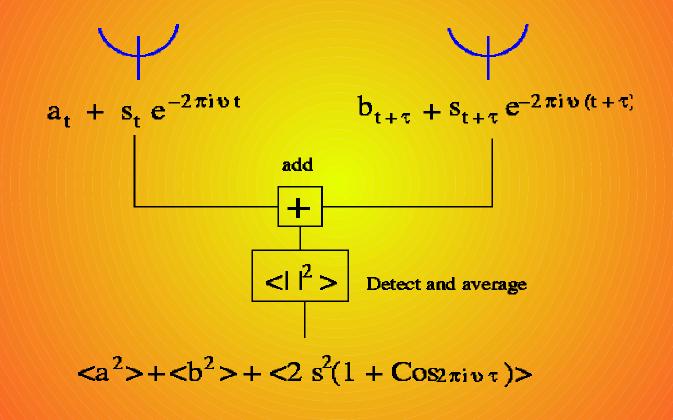
Similarities between radio and mid-IR

• Physics of optics the same (coherence fn)

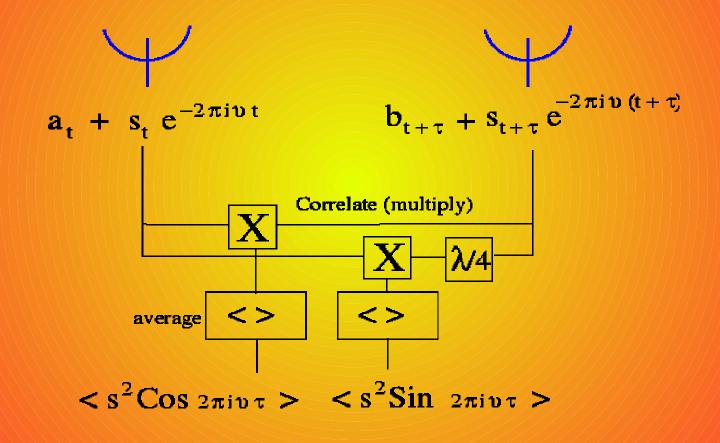
 $V(u, v) \approx \int \int B(x, y) e^{-2i\pi(ux+vy)} dx dy$

- Signals background dominated.
- Atmospheric phase fluctuations worst problem.

Differences between radio and mid-IR 1


• Hardware:

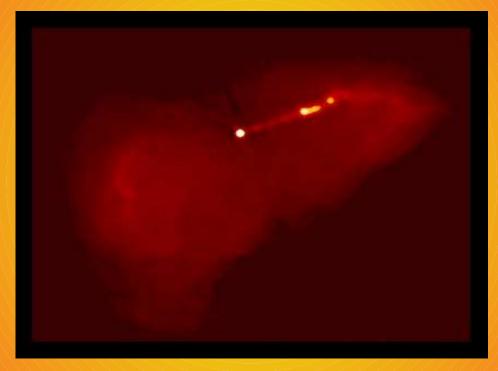
- Mid-IR it's all done with mirrors
- Radio uses analog and digital electronics.
- Time and size scales of atmospheric fluctuation are very different
 - Mid-IF few to hundreds of msec, few m
 - Radio seconds to hours, 100s 1000s m


Differences between radio and mid-IR 2 Heterodyne vs Direct

- Mid-IR (usually) uses direct interferometer
 - Detect interferometer power (not phase)
 - Wide bandwidth, many THz
 - Few baselines/delays
 - Adding interferometer
- Radio (usually) uses heterodyne interferometer
 - Bandwidth limited to few Ghz
 - Many baselines/delays
 - Correlation interferometer

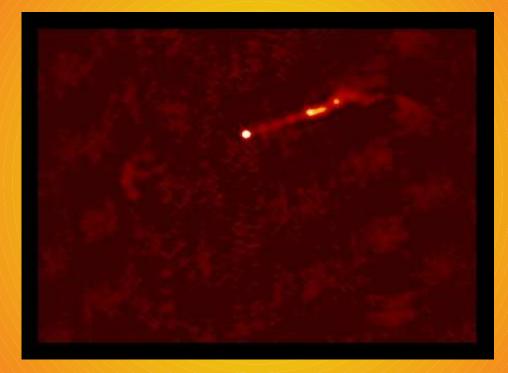
Adding interferometer

Correlation interferometer


• Why not always a heterodyne system?

- Bandwidth, max. correlator few 10s Ghz, direct interferometry can obtain many THz.
- Heisenberg. Quantum effects add noise if phase measured:
 - @ 2mm add 7.2 K noise
 - @ 20µ add 720 K noise
 - @ 10µ add 1450 K noise
 - @ 5µ add 2900 K noise
 - @ 1µ add 14500 K noise

Experience from Radio Interferometry

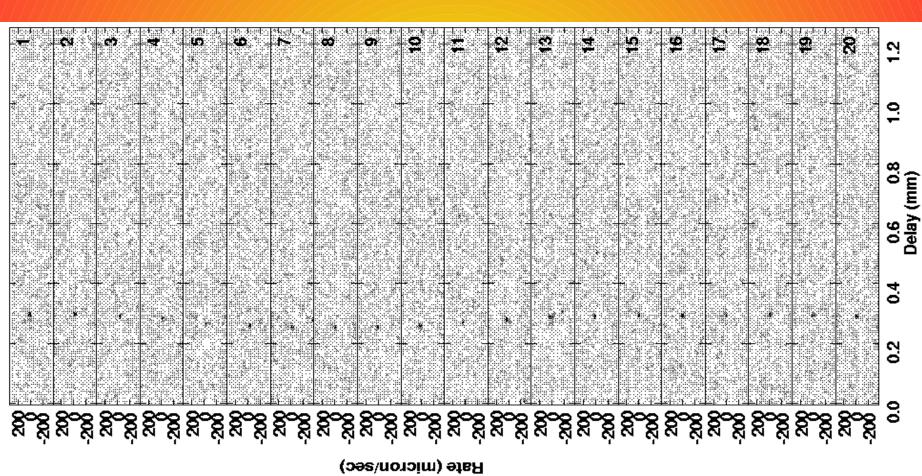

- Imaging issues:
 - Short baselines are important.
 - It takes many baselines to make a good image.
 - Sparse uv coverage requires modeling rather than imaging
 - Self calibration works much better with increasing number of simultaneous telescopes.

Radio image with 27 antennas (353 baselines)

9

Radio image with 6 antennas (30 baselines) (and no short baselines)

10


Frequency - Time relationship 1

• Frequency and time (delay) related by Fourier Transform:

$$V(\nu) = c \int S(\tau) e^{-2 - \pi i \nu \tau} d\tau$$
$$S(\tau) = \frac{1}{c} \int V(\nu) e^{2 - \pi i \nu \tau} d\nu$$
Where V(v) is in frequency space
and S(\tau) is in delay space.

Frequency - Time relationship 2

- Frequency and delay relationship forms the basis of Fourier Spectroscopy.
- Relationship can be used to track OPD for dispersed interferometry.
 - Dispersed fringes can be transformed to OPD
 - Allows tracking atmospheric OPD without observing ``off fringe".

Dispersed Fringe Tracking MIDI High Dispersion Simulation

Closure relationships 1

- Many, but not all, atmospheric and instrumental phase errors close when summed around a closed set of baselines: φ_{closure} = (φ₁₂ + φ₂ - φ₁) + (φ₂₃ + φ₃ - φ₂) - (φ₁₃ + φ₃ - φ₁) φ_{closure} = φ₁₂ + φ₂₃ - φ₁₃
- These can be used as constrains when solving for calibration phase and source structure or in fitting models.
- Number of closure phases goes up rapidly with the number of simultaneous telescopes.

Closure relationships 2

- Differences in phase screen across apertures may introduce non closing errors, need:
 - Sufficiently good adaptive optics, or
 - Spatial filtering, or
 - A small aperture.
- A similar relationship exist for amplitudes and 4 or more telescopes.

Wide Field Considerations

- Time and wavelength averaging average over uv plane.
- If visibility function changes in averaging interval, the results will be distorted.

Frequency Averaging 1

- Causes chromatic aberration
- Reduction in point source response:

$$R = \frac{1}{\sqrt{\left[1 + (0.939 \, r \, \Delta \, \nu / \theta \, \nu)^2\right]}}$$

Where:
v is frequency of observations (Hz),
Δv bandwidth (Hz),
θ is the synthesized beam size (rad),
r is distance from center,
Thompson, Moran, Swenson, 2001

Frequency Averaging 2

- Objects will be smeared in the radial direction.
- Can be reduced by observing in dispersed mode.

Time Averaging

• Reduction in point source response:

$$R \sim 1 - \frac{1}{3} \left(\frac{0.8326 \, \nu \, \tau}{2 \, \pi \, \theta} \right)^2 \, \left(l^2 \, + m^2 \, \sin^2 \, \left(\delta \right) \right)$$

Where:

v is frequency of observations (Hz),

 τ is averaging time (sec),

 θ is the synthesized beam size (rad),

 δ is source declination,

1, m are the direction cosines from the center, Thompson, Moran, Swenson, 2001

Effects depend on details of observation

Conclusions

- Much commonality in Radio and Mid-IR interferometry.
- Some serious technical differences.
- Similarities increase away from the hardware.
- Much potential for sharing technology.