Near and mid-infrared visibilities to study cool (super-)giant stars

Ringberg Workshop

Guy Perrin Observatoire de Paris / LESIA

September 4, 2003

- 3 relocatable 45cm siderostats
- Minimum baseline: 5m
- Maximum baseline: 38m
- FLUOR:
 - 2–2.4 µm (K band)
 - $3.4 4\mu m$ (L band) (TISIS)

Mont Hopkins Arizona

IOTA

Infrared and Optical Telescope Array

Supergiants

Semi-regular variables

Mira stars

Mira stars

Mira stars

Spatial characterization of the close environment is necessary : molecular or dust effect or both?

Available High Angular Resolution data

• <u>Below ~ 1µm:</u>

- Very strong molecular bands (TiO) which obscure the photosphere
- Visibility curves are gaussian and the equivalent diameters are quite big
- Not a good probe of the photosphere which is confused by the thick atmosphere

Above ~ 10μ m:

- Detection of dust but far from stellar photosphere (~ 300 K)
- A priori poor sensitivity to molecular bands

<u>«!Choices!»:</u>

- K band : continuum + CO and H_2O bands
- L band : continuum, sensitive to close circumstellar environment ~ 1000 K

Wide band K & L: the close layer hypothesis

(Mennesson et al. 2002)

Narrow band observations in K

Simple model: photosphere + single layer

(also described in Scholz 2001)

Fitting the narrow and L band data of R Leo with the model

Method to find the optimum parameters

- 1. Explore (R_*, R_{layer}) space and pick-up optimum
- 2. T_* and T_{layer} are linked at optimum: $T_*=f(T_{layer})$

- 1. Constrain T_* and T_{layer} with K (and L) magnitudes
- 2. Fit best optical depths in each band

Fitting the narrow and L band 2000 data of Mira

Fitting the narrow band 2001 data of Mira

Comparison of Mira data at phases 0 and 0.2

Phase 0 (October 2000)

Phase 0.2 (November 2001)

R_{*} = 12.34±0.02 mas R_{laver} = 26.84±0.06 mas

 $R_* = 12.71 \pm 0.15 \text{ mas}$ $R_{\text{layer}} = 24.95 \pm 0.10 \text{ mas}$

R_∗ **⊀** 0.37 mas (3%)

R_{laver} **▲ 1.89** mas (7.3%)

although the apparent diameter change (UD) is + 20%

The apparent diameter change could be due to a pure optical depth effect

Comparison to ISI 11.15 μ m data

The disk seen by ISI @ 11.15 µm may be the molecular layer above the photosphere

 $\tau = 1.06 \pm 0.14$

Connection to closest masers (SiO)

(Cotton et al. 2003, submitted)

Brightness distributions for Mira 11/2001

2.03 μm (H₂O)

2.15 µm

First conclusions

- The layer model provides a likely explanation to both K and L data (and ISO data)
- The narrow band data show that H_2O is present in this layer
- The narrow band data can be interpreted as a τ variation of this layer
- Apparent diameter variations can be interpreted as pulsation $\frac{\text{and}/\text{or}}{\tau}$ variations
- Open questions:
 - Is CO contributing to the τ of the cool layer ?
 - What are the relative importances of CO and H_2O ?
 - What about other contributors to opacity like OH-?

Narrow band data on an S star: χ Cyg

Second conclusions

- CO is likely to be also a major contributor to optical depth
- Mira stars visibility curves are very far from classical LD disk visibility curves
- Classical visibility curves lead to overestimating Mira stars diameters by 30-40% in the K band
- Mira stars visibility curves need to be interpreted in terms of photosphere + cool layer model. Simpler models interpretations are misleading (V plateau after the «!first lobe!»)
- At least Mira and R Leo are fundamental pulsators

Applicability to Supergiants

Applicability to Supergiants

Conclusions

- Demonstration of the potential of combining high precision interferometry and spectroscopy (AMBER, MIDI)
- A good sampling of the visibility curve is very important
- The simple model will be very useful to derive basic parameters as inputs/first guess for more sophisticated models
- MIDI and AMBER both need to be used for these objects.
- Mine of future results with VLTI and MIDI in particular thanks to spectroscopic capabilities : model, photospheric pulsation, shocks, nature of molecular layers and physical properties ...