

Past and Future Impact of Interferometry

> Andreas Quirrenbach Sterrewacht Leiden

The VLT Interferometer

Ringberg August 2003

Why Build a Stellar Interferometer?

- To overcome the resolution limitations of conventional telescopes
- To measure the brightest and nearest stars
 - Angular diameters
 - Binary star orbits
 - Limb darkening
 - Stellar surface structure
 - Stellar positions and proper motions
 - Detection of planets
- To constrain theoretical models that describe stellar astrophysics.

• In the near future: also fainter objects (AGN etc.)

Ringberg August 2003

Michelson's 20 Foot Interferometer on Mt. Wilson

Observing in the Old Days

Abb. 3. Showing observer at cyepiece of 20 foot interferometer.

The ISI (Infrared Spatial Interferometer, Mt. Wilson)

Ringberg August 2003

Schematic Layout of Michelson Interferometer

Ringberg August 2003

The Mark III Interferometer

The Twin Keck Telescopes on Mauna Kea (Hawaii)

The LBT (Large Binocular Telescope, Mt. Graham, AZ)

VLTI Delay Lines

Ringberg August 2003

NPOI Six-Way Beam Combiner

Ringberg August 2003

Integrated Optics Three-Way Beam Combiner

Produced by LETI with silica-on-silicon etching technique

Ringberg August 2003

Stellar Physics

Andreas Quirrenbach Sterrewacht Leiden

Mass-Radius Relation for Low-Mass Stars

Ringberg August 2003

15

Mk III Diameter Measurements of the Giant Star β Pegasi

Ringberg August 2003

Schematic Model of Extended Stellar Atmosphere

Ringberg August 2003

IOTA / FLUOR Data on the Mira Star R Leonis

18

IOTA and 6m SAO Speckle Data on R CrB (surrounded by dust)

Mapping Pulsations with Doppler Tomography and Interferometry

Left: Model

Right: Simulated Reconstruction without and with interferometry

Ringberg August 2003

Cepheid Pulsations

Ringberg August 2003

Circumstellar Disks, Winds, and Outflows

Andreas Quirrenbach Sterrewacht Leiden

COAST Synthesis Image of the Be Star ζ Tauri

Ringberg August 2003

Model of a Main-Sequence Disk at 10 µm

Ringberg August 2003

Schematic Diagram of Accretion Disk around a Proto-Star

The η Carinae Nebula (WFPC2, NACO, VLTI)

Ringberg August 2003

Model of η Carinae

Ringberg August 2003

ISO Spectrum of the Red Rectangle

Ringberg August 2003

Galactic Nuclei

Andreas Quirrenbach Sterrewacht Leiden

The Central Few Arcseconds of Our Galaxy

Ringberg August 2003

NGC 1068 as Seen in the Radio and by NACO at 5 μ m

Ringberg August 2003

Model of an AGN Torus

Ringberg August 2003

Appearance of Torus as a Function of Inclination

Iso-Velocity Contours for Model of 3C273

Ringberg August 2003

Interferometric Astrometry

Andreas Quirrenbach Sterrewacht Leiden

Motion of the Sun, Viewed Pole-on from 100 pc

Amplitude: 500 pico-radians 100 micro-arcsec

Ringberg August 2003
Requirements for Astrometric Planet Detection

Astrometric Measurement with an Interferometer

Dual-Star Interferometry

Ringberg August 2003

Goals of Astrometric Planet Surveys

- Accurate mass determination for planets detected in radial-velocity surveys (no sin *i* ambiguity)
- Frequency of planets around stars of all masses
 - Relation between star formation and planet formation
- Gas giants around pre-main-sequence stars
 - Time scale of formation, test formation theories
- Coplanarity of multiple systems
 - Test interaction and migration theories
- Search for Solar System analogs
 - Detection of icy or rocky planets

Palomar Testbed Interferometer (PTI)

Ringberg August 2003

Astrometry Demonstration with Palomar Interferometer

Ringberg August 2003

Simulation of Planet Observations with the VLTI

Ringberg August 2003

The Principle of Differential Phase Interferometry

Ringberg August 2003

Spectrum of 51 Peg B and Phase on 100 m Baseline

The Space Interferometry Mission (SIM)

Ringberg August 2003

Planet Detection Capability for 1 µas Astrometric Sensitivity

Ringberg August 2003

Distances in the Galaxy

- Calibration of Cepheids and RR Lyrae stars
- Ages of globular clusters and metalpoor stars
- Luminosities of neutron stars and black hole candidates

10% accuracy at 25 kpc

Orbits of X-Ray Binaries

Ringberg August 2003

Andreas Quirrenbach

49

X-Ray Binary Science with SIM

- Mass function of Black Hole Candidates
- Existence of black holes with $M \le 5 M_{\odot}$ formed via accretion-induced neutron star collapse?
- Existence of black holes with $M \ge 20 M_{\odot}$ whose progenitors retained most of their mass until collapse?
- Mass of Neutron Stars: constraints on nuclear equation of state
- Luminosities from parallaxes: test of models (existence of event horizon in BHCs, ADAF models)

Measuring the Potential of the Galaxy

- Dwarf galaxy is disrupted in potential of the Galaxy
- Measure 6-dim phase space for stars in coherent structures (debris tails)
- Integrate orbits backwards
 ⇒ must retrieve compact dwarf galaxy
- Adjust assumed galactic potential until this is achieved

Rotational Parallax \Rightarrow Distance to Andromeda

 Observe radial velocity, two proper motions
 Solve for *D*, *i*, and V_{rot} Andreas Quirrenbach

"Proper Motion" of Quasars

Interferometric Imaging

Andreas Quirrenbach Sterrewacht Leiden

Images from Keck Aperture Masking (Tuthill et al.)

Phase information is needed to recover asymmetric structure.

Ringberg August 2003

VLTI Imaging Simulation with Four and Eight Telescopes

A Y-Shaped Configuration

Aerial View of the NPOI Array

Ringberg August 2003

Interferometric High-Resolution Spectroscopy

- Combination of interferometry with highresolution spectroscopy is very powerful
 - Limb darkening profiles in absorption lines → tests of stellar atmospheres, calibration of projection factors in Cepheid measurements
 - Phase shift across absorption lines \rightarrow orbits of very close binaries, direct measurement of stellar rotation
 - Surface structure of chemically peculiar stars
 - Trace shocks in Mira atmospheres
- Need $R \approx 20,000 \dots 100,000$

Ringberg August 2003

Interferometer Phase across Stellar Absorption Line

Combination of Astrometry with Spectro-Interferometry

Information from Orientation of Rotation Axis

- Alignment of components in wide binary systems
 - Mechanism of binary star formation
 - Angular momentum distribution in multiple systems
- Orientation of planetary orbit with respect to stellar rotation axis
 - Correlate with planetary masses, orbital eccentricities
 - Probe eccentricity pumping mechanisms

Spectroscopy of Extrasolar Planets

Andreas Quirrenbach University of California, San Diego

The DARWIN Interferometer (ESA, after 2012)

Ringberg August 2003

Infrared Spectra of Venus, Earth, and Mars

- Venus looks cold ⇒
 cloud cover
- Mars is cold ⇒
 no liquid water
- Earth is warm ⇒
 liquid water and oxygen
- Note presence of CO₂ in all three cases

Infrared Spectrum of Earth

History of Oxygen in Earth's Atmosphere (Kasting et al.)

Temporal Variation

 Spectra will vary because of cloud variation, seasonal variation and rotational period; useful information might be derived from these variations.

Simulated Spectrum of Exo-Earth Observed with DARWIN

Dreams for the Future

Andreas Quirrenbach Sterrewacht Leiden

ELSA Concept

- Number of telescopes: 20
- Telescope diameter: 10 m
- Maximum baseline: 5 km
- Wavelength range: 500 nm ... 20 µm
- Beam transport: Single-mode fiber bundles
ELSA Resolution: 20 μas at 500 nm

• 30,000 km at 10 pc

- 4 pixels across Jupiter-size object
- 40 pixels across Solar-type star
- 0.2 AU at 10 kpc
 - GR effects on stars very close to the Galactic Center
- 200 AU (1 light-day) at 10 Mpc
 - Images of AGN Broad-line regions
 - Expansion and light echoes of supernovae

Darwin / TPF ++

Exo-Earth Imager

Andreas Quirrenbach