Combining MIDI Measurements and Lunar Occultation Observations with TIMMI2

B. Stecklum, TLS Tautenburg; H.-U. Käufl, A. Richichi, ESO

Outline:

- Basic principle of lunar occultations (LO)
- Observational requirements and sensitivity
- Target selection
- Information retrieval
- The example of CW Leo
- MIDI observer, don't miss you chance!

Stecklum, Käufl, & Richichi (1997), in: *Science with the VLTI*, ed. F. Paresce

Käufl, Stecklum, & Richichi (1998) Proc. SPIE 3350

Basic Principle of Lunar Occultations

angle [mas]

Observational Requirements and Sensitivity

Thermal background in the Airy disk for *N* band: $\sim 10^{10}$ photons/s Full well capacity of the detector pixels: $\sim 10^7 \text{ e}^-$

→ short detector read-out times (~10ms) to avoid of saturation from the background in the thermal infrared (IR)

Each thermal IR camera/low-res spectrometer has the potential for recording LOs!

LO observations have to be done in staring mode

SNR for LO observations in the *N* band with DIT=10ms

TIMMI2 in the cage of the ESO 3.6-m telescope

First LO observations with TIMMI (Käufl et al. 1992, 64x64 pixels, ~500 frames) in 1996

TIMMI2 (Reimann et al. 1998, 320x240 Raytheon detector) is capable of measuring LOs after the replacement of the initial read-out electronics by ESO's IRACE system; no on-sky tests yet but observing time in P72 granted, most promising mode: (slitless) low-res spectroscopy (R~160)

Target Selection

"Unbiased" sample of occultation targets due to lunar orbit (sky coverage $\sim 10\%$), mean time between occultation cycles ~ 9 yrs

There are several sky regions harboring numerous and/or interesting targets, e.g., Galactic Bulge (incl. GC, AGB stars, massive YSOs), Taurus, Ophiuchus, Orion, CW Leo.

0ccu ⁻	lta	tion	forecast f	or La	Silla	for	IRAS	sources
with	F(1	12)>2	25Jy					
уууу	mm	dd	IRAS	F((12)	F(2	25)	F(60)
2004	2	9	11432+0648	42.	920	10.8	350	1.762
2004	2	16	18194-2708	685.	000	264.6	500	70.060
2004	4	6	13389-0827	27.	150	6.6	576	1.039
2004	4	10	17450-2724	55.	650	41.2	240	34.690
2004	5	2	12226+0102	91.	640	28.6	590	5.756
2004	5	31	13389-0827	27.	150	6.6	576	1.039
2004	6	4	17501-2656	243.	600	195.5	500	61.120
2004	6	4	17517-2731	27.	000	22.2	220	21.930
2004	7	2	18194-2708	685.	000	264.6	500	70.060
2004	7	2	18194-2708	685.	000	264.6	500	70.060
2004	7	29	17517-2731	27.	000	22.2	220	21.930
2004	8	24	16235-2416	35.	120	265.0	000 2	2196.000
2004	8	24	16240-2430	39.	440	74.0	020	197.300
2004	9	19	16052-2339	50.	200	24.8	360	3.332
2004	10	5	06011+2829	67.	900	34.6	510	6.103
2004	10	20	19038-2744	26.	050	6.0)19	1.052
2005	2	5	17450-2724	55.	650	41.2	240	34.690
2005	2	26	12020+0254	30.	450	18.3	300	3.077
2005	4	1	18100-2808	28.	210	22.8	390	3.192
2005	4	28	17455-2800	82.	840	468.6	500 2	2543.000
2005	4	28	17473-2751	144.	000	112.3	300	20.880
2005	4	28	17488-2800	250.	100	148.3	300	18.390
2005	4	28	17495-2813	37.	530	31.4	450	12.210
2005	6	22	18018-2802	139.	700	80.6	550	14.580
2005	6	22	18018-2802	139.	700	80.6	550	14.580
2005	6	23	19038-2744	26.	050	6.0)19	1.052
2005	6	27	23142-0759	64.	640	16.9	910	2.682
2005	8	16	18100-2808	28.	210	22.8	390	3.192
2005	9	11	17361-2807	26.	400	24.1	170	5.972
2005	11	6	18100-2808	28.	210	22.8	390	3.192

Global LO prediction for the carbon star V5104 Sgr (top) and crude BB fit of its SED (left, $T_{eff} \approx 230$ K, $\Theta \approx 90$ mas)

Ringberg Workshop "Long Baseline Interferometry in the Mid-Infrared" 1.-5.9.2003

Information Retrieval

I) Fit of the observed fringe pattern using a model (binary star, uniform disk, output of radiative transfer calculations)

LO of R Leo (K band) together with best fit (solid line), residuals (bottom) and reduced χ^2 (insert) Tej et al. (1999)

II) Recovery of the strip brightness distribution by deconvolution using a model PSF

Stecklum et al. (1995)

Deconvolved strip brightness distribution (dashed-dotted line) and synthetic strip brightness distribution based on adaptive optics imaging in the *K* band (full line)

Information Retrieval

III) In case of multiple occultation observations, the application of a tomographic technique (back-projection based on the Radon transform) allows to recover the image (at least in principle, with some inherent smoothing):

From left to right: Intensity distribution of a circumstellar disk computed with MC3D (Wolf, Henning, & Stecklum 2002) with superimposed strip brightness distribution; reconstructed images with 3, 6, and 1257 projections and corresponding strip brightness distributions without (top) and with Lucy deconvolution (bottom)

Ringberg Workshop "Long Baseline Interferometry in the Mid-Infrared" 1.-5.9.2003

The Example of CW Leo

CW Leo (IRC+10216) Daytime observation with TIMMI (1998 Nov. 11th, 11.6µm) Stecklum, Käufl, & Richichi (1999)

HST WFPC V image Mauron & Huggins (2000)

Strip brightness distribution for optical thick concentric dust shells

Time series of the disappearance (top) and reappearance (bottom) of CW Leo (each image is the average of three frames taken in staring mode with 50ms detector integration time)

The Example of CW Leo

Light curve of the reappearance (SNR \approx 540)

Deconvolved strip brightness distribution, folded around the "center of light"

Major results:

- No detection of the central star \rightarrow optically thick dust configuration
- Up to four coherent wiggle features indicate the presence of onionlike dust shells close to the star
- The separation of these shells suggests dust formation with sub-harmonic frequencies of the Mirapulsation, in accordance with models (Schröder et al. 1998)

MIDI observer, don't miss your chance!

LO observations provide angular resolution similar to MIDI with a very small demand on observing time. LOs of targets appropriate for OT proposals in P73 (F (N) \geq 5 Jy) can be detected with TIMMI2 at SNR \geq 3. Due to the integration over one spatial coordinate, strip brightness distributions derived from LOs cannot be easily used to fill the *uv*-plane.

Immediate rewards:

- Binary stars: intensity ratio and projected separation from LO; one visibility point is enough to fix the position angle of the system
- Angular diameters: LOs will generally sample a different "projected baseline" than MIDI, thus allow conclusions on deviations from spherical symmetry
- Extended sources: additional constraints on models will shrink acceptable parameter space; almost simultaneous LO/MIDI observations should be attempted for variable sources
- The strip brightness distribution provides information on the object symmetry, i.e., a coarse phase which can be helpful as initial guess for iterative phase reconstruction (e.g., Fienup 1978)

Historic perspective:

The situation concerning LOs in the IR is getting similar to that in radio astronomy about 40 years ago. Radio astronomers abondoned the use of LOs when their interferometric arrays became available.