AGN tori aren't alike The VLTI/MIDI AGN Large Programme

Leonard Burtscher

MPE - Garching

with Klaus Meisenheimer (MPIA), Konrad Tristram (Bonn), Walter Jaffe (Leiden), Marc Schartmann (MPE) and the MIDI AGN Large Programme team: Ric Davies, Sebastian Hönig, Makoto Kishimoto, Jörg-Uwe Pott, Huub Röttgering, Gerd Weigelt, Sebastian Wolf

AGNs are a part of galaxy evolution, e.g.

Merger > Star Formation > Obscured AGN > Quasar > Elliptical Galaxy

AGNs are a part of galaxy evolution, e.g.

Merger > Star Formation > Obscured AGN > Quasar > Elliptical Galaxy

However: Unclear what causes AGN activity

AGNs are a part of galaxy evolution, e.g.

Merger > Star Formation > Obscured AGN > Quasar > Elliptical Galaxy

However: Unclear what causes AGN activity

AGNs are a part of galaxy evolution, e.g.

Merger > Star Formation > Obscured AGN > Quasar > Elliptical Galaxy

However: Unclear what causes AGN activity

The best cases

3 component model of the dust emission in the Circinus galaxy

NGC 1068

Jaffe+ 2004

Raban+ 2009, Lopez+ 2014

Circinus galaxy

Tristram+ 2007

Tristram+ 2013

Building a large sample

Burtscher+ 2012,2013

5

(u,v) coverages [Examples]

Results on 23 AGNs

Diverse population, but mostly Seyfert galaxies with $10^{43} < L_{MIR}$ [erg/s] $< 10^{44}$ 10 < D [Mpc] < 100

Image space (Intensity distribution)

resolved and unresolved (case 1)

Fourier space (Visibility)

Image space (Intensity distribution)

resolved and unresolved (case 1)

over-resolved and unresolved (case 2)

Fourier space (Visibility)

resolved and unresolved (case 1)

over-resolved and unresolved (case 2)

essentially unresolved (case 3)

Fourier space (Visibility)

LEDA17155

Elongations?

Hard to detect in weak sources.

Lopez-Gonzaga+ in prep.; see also Hönig+ 2012, 2013

5 mas

10 pc

Tori appear larger when seen edge-on

No difference type 1/2

No difference type 1/2

More scatter at 10 µm?

No difference type 1/2

More scatter at 10 µm?

Is size meaningful?

The fraction of unresolved flux

...does not depend much on inclination or position angle

Schartmann et al. 2008

The fraction of unresolved flux

...does not depend much on inclination or position angle

But tori aren't alike, even when observed at similar resolution

Schartmann et al. 2008

Burtscher+ 2013

The AGN torus consists of two components: a disk and an extended, elongated structure

(How meaningful are parameters derived from single-structure torus models?)

I) The AGN torus consists of two components: a disk and an extended, elongated structure

(How meaningful are parameters derived from single-structure torus models?)

2) The disk seems to be connected to the maser disk.

I) The AGN torus consists of two components: a disk and an extended, elongated structure

(How meaningful are parameters derived from single-structure torus models?)

- 2) The disk seems to be connected to the maser disk.
- 3) AGN tori aren't alike.