Molecular Gas and GMCs in M51 vs M33 and the LMC

Eva Schinnerer (PI) Dario Colombo Clare Dobbs Gaelle Dumas Santi Garcia-Burillo **Carsten Kramer** Adam Leroy **Sharon Meidt** Jerome Pety **Karl Schuster Todd Thompson**

Annie Hughes (MPIA)

Talk Outline

I. Overview of PAWS data set

II. Properties of GMCs in different galaxies and M51 environments

III. Distribution of CO emission (PDFs) in different M51 environments

PdBI Arcsecond Whirlpool Survey

see posters by Eva and Dario

IRAM 30m: 40 hr PdBI: 170 hr

10 kpc

IRAM Large Programme

- largest PdBI mosaic to date
- public data release: now!
- FoV ~ 60kpc²
- resolution ~40pc, 5km/s
- RMS $T_{mb} \sim 0.4$ K per channel
- \Rightarrow 5 σ detection of 1.2e5 M $_{\odot}$ GMC

500 pc

Schuster et al. (2007)

Pety et al. (ApJ, accepted)

GALEX, Gil de Paz et al 2006

GALEX, Gil de Paz et al 2006

FCRAO+BIMA, Rosolowsky et al 2007

LMC

MAGMA, Wong et al 2011

M33

Talk Outline

I. Overview of PAWS data set

II. Properties of GMCs in different galaxies and M51 environments

III. Distribution of CO emission (PDFs) in different M51 environments

GMC Properties

After homogenizing the datasets, M51 GMCs:

➡ are larger

are brighter (peak T and CO surface brightness)

→ have larger
 linewidths (especially
 relative to size) than
 GMCs in M33 and LMC

GMC Properties

Within M51, GMCs in the arms and centre:

➡ have larger linewidths; and

are brighter

than interarm clouds.

Also detect small variations between T_{pk} and σ_v of up- and downstream GMCs.

Colombo et al. (submitted)

Size-linewidth relation

Larson Laws

1. GMCs follow $\sigma_v \propto R^{0.5}$

2. GMCs achieve virial equilibrium (M $\propto \sigma_v^2 R$)

3. GMCs have constant
mass surface density
(~100 M⊙ pc⁻²)

M51 arm + centre

Size-luminosity relation

Larson Laws

1. GMCs follow $\sigma_v \propto R^{0.5}$

2. GMCs achieve virial equilibrium (M $\propto \sigma_v^2 R$)

3. GMCs have constant mass surface density (~100 M_{\odot} pc⁻²)

M51 arm + centre

A consequence of Pext?

Hughes et al, submitted

M51 arm + centre

Part II: Summary

• Basic physical properties of GMCs (e.g. T_{pk} , R, σ_v) vary with galactic environment

• Constant Σ_{H2} of GMCs reported by previous extragalactic CO studies may be observational artifact

 No compelling evidence of size-linewidth relationship, but M51 clouds have larger linewidths at a fixed size scale than clouds in the dwarf galaxies

• σ_v and Σ_{H2} of GMCs regulated -- or at least influenced -- by external pressure?

Talk Outline

I. Overview of PAWS data set

II. Properties of GMCs in different galaxies and M51 environments

III. Distribution of CO emission (PDFs) in different M51 environments

Wada & Norman (2007)

Wong et al. (2011)

But: universal lognormal PDF for galactic disks not observationally established

Integrated Intensity PDF

Hughes et al. (accepted)

CO Brightness PDF

Hughes et al. (accepted)

PDFs & GMC Properties

High BDI and IDI values associated with:

- higher number density of GMCs
- higher maximum GMC mass
- higher average GMC surface density

• shallower GMC mass spectrum

PDFs & Young Clusters

High BDI and IDI values associated with:

- higher number density of clusters
- higher surface density of clusters
- more massive clusters
- higher maximum cluster mass

But:

 no relationship to shape of cluster mass function

Part III: Summary

• Width of CO PDFs increases with increasing average gas surface density, as predicted by simulations

 Observed shapes of CO PDFs are diverse ⇒ spiral arm phenomena (shocks/streaming motions/stellar feedback) produce observable departures from lognormal gas density distribution on 50 pc to kiloparsec scales

• Shape of CO PDF is connected to properties of both the GMC and young stellar cluster populations.

Conclusions

- Are GMC properties universal?
- Are lognormal (column) density PDFs ubiquitous?
- Do gas dynamics and spiral structure matter?

No.

Yes.