Topics of Discussion

- GMC Lifecycle?
 - Lifetime of GMCs?
 - Environmental dependence?
- Paradigm of GMCs?
 - GMC identification in obs. and in sim.
 - Diffuse CO emitting gas?
 - Paradigm of GMCs? bound? Just part of continuous power-spec?
- ALMA perspective
 - What can we do with ALMA?
 - Sensitivity, resolution, and *uv-coverage*

TOPIC 1: GMC LIFECYCLE?

GMC LIFETIME?

ENVIRONMENTAL EFFECTS?

GMC Lifetime: Long? or Short?

Galactic rotation timescale ~200-300 Myr – very long compared to timescales within GMCs (e.g., star formation, turbulence decay) Columbia CO1-0 Survey UMASS-Stony Brook CO1-0 Survey

No GMCs in interarm regions

GMC lifetime

- ~ Arm crossing time
- ~20-30Myr?

GMCs exist in interarm regions

GMC lifetime

~ Galactic rotation time

~200-300Myr?

GMC Distribution

e.g., gas phase & density, metallicity, stellar component, radiation field ...

What's most important?

Similar GMC Properties

Dwarfs (atom-rich)

Disks (molecule-rich)

Bolatto et al. 2008

Donovan Meyer et al. (2013)

Current limitation: resolution ~ GMC size. Similar in very different environments – how can they be? Difference between arm and interarm GMCs in M51?

Supersonic Turbulence

Mac Low & Klessen 2004

Rapid decay within crossing time (~2-3Myr)

Supersonic turbulence drive/regulate SF Difficult to maintain turbulence without continuous E input.

TOPIC 2: GMC PARADIGM?

GMC PARADIGM?

DIFFUSE CO EMISSION?

Paradigm of GMC?

- 13CO GMC Examples
 - Emission peak down to closed surface above T_{mb} =2K

0138

0140

Koda et al. 2006

Paradigm of GMC?

Nobeyama 45m CO(1-0) Channel maps of MW (I~38 deg) 50 arcmin x 50 arcmin, 15" resolution (<0.7pc)

Clumpy in spiral arms

Sawada et al. 2012

Structural Evolution Across Spiral Arms

BU-FCRAO ¹³CO Galactic Ring Survey

Diffuse CO? – Outside GMCs?

- New PdBI CO(1-0) map of M51
 - Resolution ~40pc
 - Sensitivity ~10⁵ M_{sun}

Schinnerer et al. 2013

Unresolved emission ~50%

- Dynamically-hot extra-planar gas ____
- Diffuse CO emitting gas?

Basics

- Survival of CO
 - Balance between
 - CO formation rate $\propto n^2$
 - CO destruction rate (by UV) $\propto n$
 - Self-shielding needs Av~0.5-1.0 mag @ n_H=10³cm⁻³

van Dishoek & Black 1988

Critical density for collisional excitation

$$n_{crit} = \frac{A}{C} \frac{\beta}{\Lambda} \approx \frac{A}{C} \left[\frac{1 - e^{-\tau}}{\tau} \right]$$

Escape probability (photon trapping)

Optically-thin:

Optically-thick:

$$n_{crit} \approx \frac{A}{C} \approx 2000 \text{ cm}^{-3}$$

 $n_{crit} \approx \frac{A/\tau}{C} \approx 300 \text{ cm}^{-3}$
Average GMC density

TOPIC 3: ALMA PERSPECTIVE

WHAT CAN WE DO WITH ALMA?

UV-COVERAGE

Current Limitations

Virial parameter: $\alpha \propto M_{vir} / M_{GMC} \propto M_{vir} / L_{CO} \propto \sigma / TR$

GMC Elongations and Spins in MW

GMCs elongated preferentially along G.P.

Spin no preferred orientation Prograde and retrograde equally populated Koda et al. 2006

ackso

Struggle with Small Number of Antennas OVRO map (Aalto et al. 1999) BIMA map (Helfer et al. 2003) 10 antennas 6 antennas 47 28 30 00 М2 27 30 00 26 30 **B1** 00 13 27 54 52 40 50 46 44 42 **RIGHT ASCENSION (B1950)**

DECLINATION (B1950)

3rd spiral arm??

UV-coverage

# of Antennas (A)	# of Baselines (B)	Obs time (T)	Uv-coverage (B*T)
6	15	~100h	1500
15 (CARMA)	105	~100h	10500
36 (ALMA Cycle 1)	630	~5h	3150
50 (ALMA full)	1225	~5h	6125

In addition to sensitivity and resolution, Full synthesis (rise to set) is important!