PROPERTIES AND DISTRIBUTION OF MOLECULAR CLOUDS IN THE MILKY WAY

JULIA ROMAN-DUVAL SPACE TELESCOPE SCIENCE INSTITUTE RINGBERG WORKSHOP 2013

QUESTIONS

- How do molecular clouds form?
 - Cloud collisions in spiral arms?
 - Compression in spiral arms?
 - Flow collisions?
 - Transient density enhancements in the overall turbulent flow?
- What is the lifetime of a molecular cloud?
 - What are the processes that destroy MCs?
- How are molecular clouds supported?
 - Effects of magnetic fields?
 - Are they bound, or transient over-densities in a turbulent flow?
- What is the process that leads from molecular clouds to star formation?
 - How does the mass function of molecular clouds relate to the IMF?

=> The distribution and properties of molecular clouds, along with theoretical models, can help answer those questions

MOLECULAR CLOUDS AND STAR FORMATION

Fritz et al. 2012

DATA SETS

Galactic Ring Survey (GRS) (Jackson et al. 2006):

- ¹³CO survey of the first quadrant of the Galaxy ($18^{\circ} < I < 55^{\circ}$, $|b| < 1^{\circ}$)
- Resolution of 48" (sampled on 22" grid), 0.2 km/s
- Rathborne et al. (2009) identified 829 clouds in the GRS using CLUMPFIND

University of Massachusetts Stony Brook Survey (UMSB):

- ¹²CO survey of the first quadrant
- Resolution of 44" sampled on 3' grid (velocity resolution 1 km/s)

Very Large Array (VLA) Galactic Plane Survey (VGPS)

- HI 21 cm survey of the first quadrant $(18^{\circ} < I < 67^{\circ}, |b| < 2^{\circ})$
- Resolution of 1' sampled on 0.3' grid; spectral resolution of 1.2 km/s sampled on 0.8 km/s grid

DISTANCES TO MOLECULAR CLOUDS

 $d = R_0 \cos l \pm \sqrt{R^2 - R_0^2 \sin^2 l} = R_0 \cos l \pm \sqrt{R^2 - R_{\min}^2}$

- Based on a rotation curve model
- Large errors where non-circular motions (spiral arms....)
- •Unique solution for the galactocentric radius
- Two solutions for the distance (with respect to the tangent point)
 - "Near"
 - "Far"
- \Rightarrow Kinematic Distance Ambiguity (KDA)

BREAKING THE KDA

Warm HI (T_{ex} ~100 - 10000K) everywhere in the Galaxy

 $\rm T_{ex} \sim 10~K$ for HI in clouds + high column density => cold clouds absorb background 21 cm radiation from warm HI

NEAR

FAR

WHERE ARE THEY?

DERIVING MC PROPERTIES

CO excitation temperature from ¹²CO data

Mass of H_2 + He (assume abundance ¹³CO/H₂)

$$\frac{M}{M_{\odot}} = 0.27 \frac{d^2}{kpc^2} \int_{\ell} \int_{b} \int_{v} \frac{T_{ex}(\ell, b, v)}{1 - e^{\frac{-5.3}{T_{ex}(\ell, b, v)}}} \tau_{13}(\ell, b, v) \frac{dv}{km \, s^{-1}} \frac{d\ell}{arcmin} \frac{d\ell}{arcmin}$$

MC PROPERTIES

- Properties are derived inside 4σ isophot, or $T_b > 1$ K
- Radius: Count positions N_{pix} where the ¹³CO integrated intensity is > $4\sigma \sim 0.2$ K km/s

$$A = N_{pix} d^2 \Delta l \Delta b \qquad \qquad R = \sqrt{\frac{A}{\pi}}$$

- Virial parameter: Describes the ratio of kinetic energy to gravitational energy (α =M_{vir}/M)

$$\alpha = \frac{5\sigma_v^2 R}{GM} = 1160 \left(\frac{\sigma_{v_{1D}}^2}{km^2 s^{-2}}\right) \left(\frac{R}{pc}\right) \left(\frac{1M_o}{M}\right)$$

• Surface mass density:

$$\Sigma = \frac{M}{\pi R^2}$$

RADIUS/MASS CORRELATION

- M can only be derived for clouds covered by both GRS and UMSB (580 clouds)
- Use tight R/M correlation to derive masses of clouds outside UMSB coverage (170)

PROPERTIES OF MW ¹³CO CLOUDS

PROPERTIES OF MW ¹³CO CLOUDS

SURFACE DENSITY IN MOLECULAR CLOUDS

DISTRIBUTION OF MCS

EXCITATION CONDITIONS

TURBULENCE

- Composite structure function includes all scales detected by PCA in all ~350 GRS clouds
- Constant slope and intercept
 - turbulence is universal
 - Properties of turbulence (compressible, intermittent) could determine the slope of the IMF
- Slope of the PCA composite structure function (0.62) compatible with intermittent compressible turbulence

UNIVERSALITY OF TURBULENCE

TAKE AWAY

- Kinematic distances to ~ 750 ¹³CO clouds in the Milky Way (20° < I < 55°) are derived using HI self-absorption method (and/or continuum absorption for select cases)
- Properties and galactic distribution of ¹³CO clouds are derived with GRS (¹³CO), UMSB (¹²CO), HI 21 cm (VGPS)
 - < Σ > ~ 150 M_o pc⁻², <n> ~ 300 cm⁻³, R ~ 10 pc, σ_v ~ 1.5 km/s
 - $M \alpha R^{2.36}$
 - $\Sigma(H_2)$ peaks around 5 kpc ("molecular ring")
 - Spiral arm or ring requires more longitude coverage
 - T_{ex} seems to directly trace ISRF/SFR
- Principal component analysis of spectral cubes of MCs:
 - Turbulence energy spectrum consistent with intermittent, compressible flows
 - Slope and amplitude of structure function remarkably uniform
 - Turbulence must be driven on large scales, by processes external to MCs that are uniform in the MW.

BACK UP SLIDES

PCA

EXAMPLE OF HISA FOR A FAR CLOUD

 \ge

EXAMPLE OF HISA FOR A NEAR CLOUD

GRSMC G022.44+00.34

HI 21 cm integrated intensity "ON" the ¹³CO line - "OFF" the ¹³CO line \times

2°

EXAMPLE OF NEAR CLOUD WITH 21 CM CONTINUUM

ABSORPTION IN THE 21 CM CONTINUUM

EXAMPLE OF NEAR CLOUD WITH 21 CM CONTINUUM

EXAMPLE OF FAR CLOUD WITH 21 CM CONTINUUM

DISTANCES TO MILKY WAY MOLECULAR CLOUDS

Our view of the Milky Way is very confused

STAR FORMATION AND MOLECULAR CLOUDS

GLIMPSE: Red = 8 μm Green = 4.5 μm Blue = 3.8 μm

GALACTIC RING SURVEY (GRS): 13COJ=1-0

35.2° Galactic Longitude

GRSMC G035.14-00.76

35.1

35.0°

GRS

GRSMC G053.59+00.04

35.3

35.4'