Characterizing Molecular Cloud Populations Using Dendrograms
 Erik Rosolowsky

Image Credit: Florian Breuer

A Brief History of Trees

Structure Trees

Houlahan \&
Scalo (1992)
cprops

Rosolowsky \& Rosolowsky+ (2008) Leroy (2006)

Dendrograms

4) Iterate until zero intensity is reached

Emission Profile

Intensity

Dendrogram

Ordering (Left-Right) is usually unimportant

Dendrograms are not intrinsically a drop-in replacement for Clumpfind, cprops, or other segementation algorithms

SExtractor Manual

But dendrograms can be leveraged as a data description supporting segmentation.

DENDROFIND
Wünsch+(2012)
$=$ cprops with eclump option

Graph Statistics on Dendrograms

IC 348 NGC 1333 Offner+ (S2) Padoan+ (S1)

Common noise levels adopted across PPV data

Genus vs. Intensity curve

Dendrogram provide a flexible representation of all the salient features in the data.

Can we make a better catalog of molecular gas in the Milky Way using a method that can be applied to extragalactic clouds too?

NGC 253 in CO

Every point on a dendrogram is an isosurface.

Levels at 1.5 and $2.2 \mathrm{Jy} /$ beam

The moments over these contours give us properties.

$$
L_{\mathrm{CO}}=\delta A \sum_{i \in \mathcal{C}} I_{i} \quad \sigma_{v}^{2}=\sum_{i \in \mathcal{C}}\left(v_{i}-\bar{v}\right)^{2}
$$

Estimating Energetics:

$$
\alpha_{\mathrm{VIR}}=\frac{2 U_{\text {kin }}}{U_{\text {grav }}}=\frac{5 \sigma_{v}^{2} R}{G M} \quad \begin{aligned}
& B=0 ; \\
& \text { uniform density profile }
\end{aligned}
$$

$$
M=\alpha_{\mathrm{CO}} L_{\mathrm{CO}} \quad \text { assume an } \mathrm{X} \text { factor }
$$

Regions from simple connectivity Outer Galaxy Survey in ${ }^{12} \mathrm{CO}$ (1-0)

Heyer+ (2001)

The Orion Molecular Complex ${ }^{12} \mathrm{CO}(1-0)$

20 pc

0

Identifying GMCs in blended
data using self-gravitation
Use extrapolation to 0 K to establish properties.

Rosolowsky et al. (2008)

Dense gas is found where there is gravity

Bound structures in the OGS

Kinematic distances to non-local regions.

BU-FCRAO Galactic Ring Survey

Dense gas spectroscopy of high column sources

$3126 \mathrm{HCO}^{+}(3-2)$ or $\mathrm{N} 2 \mathrm{H}^{+}$(3-2) detections
Shirley+BGPS (submitted)

Distance Probability $\underset{\text { begs } 5 \text { sadr }}{\text { Density }}$ Functions (DPDFs)

Bonus finding: 10\% of IRDCs at far distance.

Low virial parameter predicts for dense gas.

RTD Search

Table Of Contents
Astronomical Dendrograms
Documentation
Reporting issues
Developers
Indices and tables

Next topic

Installing astrodendro

This Page

Show Source Show on GitHub Edit on GitHub

Astronomical Dendrograms

The aim of this module is to provide an easy way to compute dendrograms of observed or simulated Astronomical data in Python. The easiest way to think of a dendrogram is to think of a tree that represents the hierarchy of the structures in your data. If you consider a two-dimensional map of a hierarchical structure that looks like:

the equivalent dendrogram/tree representation would look like:

A Fast Python Implementation
by
Tom Robitaille Chris Beaumont Braden MacDonald

Tom Robitaille is happy to help you try out astrodendro this week

Dendrograms:

1) offer new statistical representations of the molecular ISM.
2) provide a channel for a physically-motivated decomposition of blended emission.
3) offer agile navigation of complicated emission structure.
