Characterizing Molecular Cloud Populations Using Dendrograms Erik Rosolowsky

Image Credit: Florian Breuer

A Brief History of Trees

Structure Trees

cprops

Dendrograms

Houlahan & Scalo (1992) Rosolowsky & R Leroy (2006)

Rosolowsky+ (2008) Goodman+ (2009)

4) Iterate until zero intensity is reached

Emission Profile

Dendrogram

Ordering (Left-Right) is usually unimportant

Dendrograms are not *intrinsically* a drop-in replacement for Clumpfind, cprops, or other segmentation algorithms

SExtractor Manual

But dendrograms can be leveraged as a data description supporting segmentation.

DENDROFIND Wünsch+(2012) = cprops with eclump option CSAR Kirk et al. (2013)

Graph Statistics on Dendrograms IC 348 NGC 1333 Offner+ (S2) Padoan+ (S1)

Common noise levels adopted across PPV data

Rosolowsky+ (2012) Proc. IEEE

Genus vs. Intensity curve

Dendrogram provide a flexible representation of all the salient features in the data.

Can we make a better catalog of molecular gas in the Milky Way **using a method that can be applied to extragalactic clouds too?**

NGC 253 in CO

Every point on a dendrogram is an isosurface.

velocity

Levels at 1.5 and 2.2 Jy/beam

The moments over these contours give us properties.

$$L_{\rm CO} = \delta A \sum_{i \in \mathcal{C}} I_i \qquad \sigma_v^2 = \sum_{i \in \mathcal{C}} (v_i - \bar{v})^2$$

Estimating Energetics:

$$\alpha_{\text{VIR}} = \frac{2U_{kin}}{U_{grav}} = \frac{5\sigma_v^2 R}{GM} \quad \begin{array}{l} B=0;\\ \text{uniform density profile} \end{array}$$
$$M = \alpha_{\text{CO}} L_{\text{CO}} \quad \text{assume an X factor} \end{array}$$

Regions from simple connectivity Outer Galaxy Survey in ¹²CO (1-0)

Heyer+ (2001)

Identifying GMCs in blended data using self-gravitation

Use extrapolation to 0 K to establish properties. Rosolowsky et al. (2008)

Dense gas is found where there is gravity

Bound structures in the OGS Kinematic distances to non-local regions.

BU-FCRAO Galactic Ring Survey

45" Resolutionvs.8.4' for CfA Telescope

 $^{13}CO(1-0)$

Jackson+ (2006)

Dense gas spectroscopy of high column sources

3126 HCO⁺ (3-2) or N2H⁺ (3-2) detections

Shirley+BGPS (submitted)

Distance Probability Density Functions (DPDFs)

Bonus finding: 10% of IRDCs at far distance.

Ellsworth-Bowers+BGPS (2013)

AstroDendro 0.0.0 documentation >

Project Versions

latest

RTD	Search

Full-text	doc	search.	

Go

Table Of Contents

Astronomical Dendrograms Documentation Reporting issues Developers Indices and tables

Next topic

Installing astrodendro

This Page

Show Source Show on GitHub Edit on GitHub

Astronomical Dendrograms

The aim of this module is to provide an easy way to compute dendrograms of observed or simulated Astronomical data in Python. The easiest way to think of a dendrogram is to think of a tree that represents the hierarchy of the structures in your data. If you consider a two-dimensional map of a hierarchical structure that looks like:

next

index

dendrograms.org

A Fast Python Implementation

by Tom Robitaille Chris Beaumont Braden MacDonald

Tom Robitaille is happy to help you try out **astrodendro** this week

Dendrograms:

1) offer new statistical representations of the molecular ISM.

2) provide a channel for a physically-motivated decomposition of blended emission.3) offer agile navigation of complicated emission

structure.