The HI-H2 boundary: Importance of neutral hydrogen for molecule (and star) formation

Snežana Stanimirović (UW Madison)

Min-Young Lee, Claire Murray (graduate students at UW), M. Wolfire, J. Miller, C. Heiles, L. Knee, J. Di Francesco, A. Leroy, R. Shetty, S. Glover, F. Molina, & R. Klessen + GALFA-HI team

NGC1333

What does HI do for molecular clouds?

- Formation reservoir (Shu73, Blitz07; Kim & Ostriker 06; Audit & Hennebelle05, Heitsch+05; Clark+12)
- Source of turbulent energy via longterm accretion, (Chieze & Pineau des Forest 89, Goldbaum+11)

→ GMC mass and lifetime different wrt Σ_{res} : 8 vs 16 M_☉pc⁻²

Knapp74; Goodman & Heiles94; Li & Goldsmith 03; Wannier+83,91, Fukui+09 3

HI-to-H₂ Transition: Observations

$HI-to-H_2$ Transition: Observations

HI halos: Observational difficulties

- **Self-absorption**: temperature fluctuations vs self-absorption?
- **HI emission**: Velocity crowding and blending of components, broad line width
- Ubiquity of HI, variations of HI intensity over a range of scales
- No systematic study in the MW.
- New: <u>high-resolution wide area</u> HI observations comparable to IR data (IRAS, Spitzer, Herschel) → explore spatial correlations + undertake detailed comparisons with models

Zoom-in on the HI halo in Perseus

- I. Does HI saturation persist on sub-pc scales?
- 2. Properties of the HI/ H_2 transition?
- 3. Alternative: High optical depth HI?

4. Is HI important for H_2 and CO formation?

Perseus molecular cloud: deriving H_2 (D = 200 - 350 pc $\rightarrow \Delta x = 0.4$ pc)

[[]agrees with Sancisi+74; Imara & Blitz11]

H₂: IR (IRAS) T-corrected+ Av (COMPLETE)

Perseus molecular cloud: deriving H_2 (D = 200 - 350 pc $\rightarrow \Delta x = 0.4 \text{ pc}$)

Perseus HI halo vs equilibrium-H₂ formation model

important.

12

4. $X_{CO} = N(H_2) / I_{CO}$ in Perseus @ 0.4 pc resolution

Lee, SS+13

4. $X_{CO} = N(H_2) / I_{CO}$ in Perseus @ 0.4 pc

What does the CO-to-H₂ Conversion Factor tells us about HI halos?

- Theory Xco = F (n, G, Z, ζ , σ_{CO} , cloud age)
- Large degeneracy BUT Characteristic dependence on A_{v}

Glover & Mac Low11; Feldmann+12

X_{co} variations: a factor of ~80 over ~7pc

Dust shielding in <u>extended HI</u> envelopes of molecular clouds, essential to explain: N(HI), I_{co}, and X_{co}.

17

Comparison with the MHD model (Shetty+11. Glover & Mac Low11)

Summary:

I. **HI surface density** saturates $\sim 10 \text{ M}_{\odot} \text{ pc}^{-2}$ on subpc scales "Spitzer shield".

2. Properties of the HI/H₂ transition:

3-5pc thickness, >20pc from CO centers Absorbing HI:Ts~40-70 K, CNM to WNM: ~50-50%

3. High optical depth HI?

High- τ HI can be significant but can not fully explain the saturation.

4. HI & dust are important for H₂ and CO?

Dust shielding from extended HI envelopes essential to explain: sharp HI-H₂ transition, CI/CII \rightarrow CO transition, and the characteristic dependence of X_{CO} on A_v.

Future work:

- Probe more extreme interstellar environments.
- Map out temperature distribution in halos and cloud centers.

More high-res HI observations on the horizon!

