Star Formation Rate and Gas Relations in Galactic Clouds

Amanda Heiderman, MPIA

RSF13, Ringberg, June 25, 2013

Co-Conspiritors

Nalin Vutisalchavakul

+ many more

Empirical Relations

Global system-average scales
in spiral & starburst galaxies

Common Parameterization: $\Sigma_{SFR} = A \Sigma_{gas}^{N}$ (Schmidt 1959; Kennicutt 1998)

N~1.4 (molecular + atomic H gas)

Empirical Relations

 1 kpc scale regions in nearby spiral galaxies

Common
 Parameterization:

 $\Sigma_{SFR} = A \Sigma_{gas}^{N}$ (Schmidt 1959; Kennicutt 1998)

N~1 (molecular H gas)

Leroy et al. 2013 (see also Bigiel et al. 2008,2011 & Schruba et al. 2011)

Extragalactic Dense Gas Relation

- Dense gas (traced by HCN)
- SFR ∝ amount of dense gas

 ${\sf SFR}_{\sf dense} \propto {\sf M}_{\sf dense}$

 Dense gas tracers select gas above a higher density threshold than COroughly "Clumps"

Extragalactic + Galactic Dense Gas Relation

 Extragalactic relation (Gao & Solomon 2004) extends to Galactic massive clumps

SFR_{dense}~1.2x10⁻⁸M_{dense} (Wu et al. 2005)

R. Benjamin (from Kennicutt & Evans 2012)

= 1 kpc

Galactic Star Formation

Ophiuchus Molecular Cloud

Evans et al. 2009

clouds are large structures of molecular gas and dust which fragment into

clumps containing multiple dense cores, which form individual stars

~0.1 pc

Av map

~10 pc

Star Formation in the local 0.5 kpc

R. Benjamin (from Kennicutt & Evans 2012)

= 1 kpc

Using Nearby ~20 Clouds to Trace *lowmass* Star Formation

- Spitzer Legacy Surveys: – "cores to disks" (c2d; Evans et al. 2009)
 - Gould's Belt (GB; L. Allen et al., in prep.)
- Cloud masses/ Σ_{gas} from extinction maps:

 $\Sigma_{\rm gas} = 15 A_V \ ({\rm M}_{\odot} \ {\rm pc}^{-2})$

- SFR= $N_{YSO} \times M_{YSO} / t_{YSO} (M_{\odot} Myr^{-1})$
 - from YSO counts, mean mass 0.5 M_{\odot} , & lifetimes

<\$\Sigma_{gas}\$ ranges 30-50 M_{\overline} pc^{-2}\$ (similar to Heyer et al. 2009; 42 M_{\overline} pc^{-2})

Testing Extragalactic Relations in Local Clouds

- Prescriptions developed over large scales
- trace *massive* star formation
- Will they work in a low-mass star forming cloud?

SFR-gas Relation in Local Clouds

- 20 c2d+GB clouds, Taurus (Rebull et al. 2010), & Gutermuth et al. 2011 cloud sample
- Clouds lie factor of ~10 on average above extragalactic relations
 - "inactive" clouds (Taurus, Cha III) lie near relations

Youngest YSOs

HCO⁺ survey at CSO & APEX to confirm YSO (detect dense gas envelope; Heiderman in prep)

Youngest YSOs

factors of ~20-50 above extragalactic relations

→ What accounts for this discrepancy?

Possible Explanations

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{gas}$ from A_V ? => differences seen, but doesn't explain discrepancy

 (2) Does Low-mass star formation behave different from high-mass star formation?
 => YSOs & high-mass clumps behave similarly

(3) Extragalactic average measurements are unresolved (include non- star forming molecular gas maybe below some threshold)?

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{\text{gas}}$ from A_V ?

- ¹²CO correlates with A_V out to $A_V \sim 7$ -10, but largely varies beyond that
- ¹³CO turns over around $A_V \sim 7-10$, due to increase in optical depth

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{\text{gas}}$ from A_V ?

• Constant value of ${}^{13}CO \text{ vs } \Sigma_{gas},$ underestimating Σ_{gas} by factors of 4-5

¹²CO underestimates A_V at $\Sigma_{gas} > 200 M_{\odot}$ pc⁻² by 30%

 Correcting for ¹²CO, would flatten the slope of the Kennicutt-Schmidt relation

Possible Explanations

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{gas}$ from A_V ? => differences seen, but doesn't explain discrepancy

 (2) Does Low-mass star formation behave different from high-mass star formation?
 => YSOs & high-mass clumps behave similarly

(3) Extragalactic average measurements are unresolved (include non- star forming molecular gas maybe below some threshold)?

(2) Do Massive Star Forming Regions Behave Differently?

- YSOs + Clumps behave similarly
- Steep increase & *possible* leveling off at ~100-200 M_☉ pc⁻²

Possible Explanations

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{gas}$ from A_V ? => differences seen, but doesn't explain discrepancy

 (2) Does Low-mass star formation behave different from high-mass star formation?
 => YSOs & high-mass clumps behave similarly

(3) Extragalactic average measurements are unresolved (include non- star forming molecular gas maybe below some threshold)?

Gas Surface Density Threshold (Σ_{th})

 YSOs + clumps are similar beyond gas threshold surface density:

 $\Sigma_{\rm gas}$ > $\Sigma_{\rm th}$

- $\Sigma_{\rm th}$ = 129±14 M_☉ pc⁻² - Slope changes from ~5 to ~1 at $\Sigma_{\rm gas}$ > $\Sigma_{\rm th}$
- On average, "normal" spirals lie below Σ_{th} and starburst galaxies lie above

Gas Surface Density Threshold (Σ_{th})

- Lada, Lombardi, & Alves
 2010 (independent methods) found
 - $\Sigma_{\rm th} \sim 116 \, {\rm M}_{\odot} \, {\rm pc}^{-2} \, (A_V \sim 7.3 \, {\rm mag})$
 - recovered a tight linear relation between SFR and total gas mass $\Sigma_{gas} > \Sigma_{th}$
- Observational studies find Σ_{th} ~120-150 M $_{\odot}$ pc⁻² (Onishi 1998; Johnstone 2004, Enoch et al. 2007; Andre et al. 2010)

Possible Explanations

(1) Σ_{gas} from CO (exgal) $\neq \Sigma_{gas}$ from A_V ? => differences seen, but doesn't explain discrepancy

 (2) Does Low-mass star formation behave different from high-mass star formation?
 => YSOs & high-mass clumps behave similarly

(3) Extragalactic average measurements are unresolved (include non- star forming molecular gas maybe below some threshold)?

(3) Extragalactic *averages* include non-star forming molecular gas?

Compare

 $M_{gas}(\Sigma_{gas} < \Sigma_{th}) / M_{gas}(\Sigma_{gas} > \Sigma_{th})$

- ~4.6 (c2d+GB clouds; A_V>2)
- ~5.1 (Orion; A_V>2 Heyer, priv. comm.)
- A_v<2, factor of ~2 more molecular mass in Taurus (Goldsmith et al. 2008)

→ factor of ~10 more $M_{gas}(\Sigma_{gas} < \Sigma_{th})$ plausible, yielding agreement between Galactic clouds & Kennicutt-Schmidt relation

 $\Sigma_{\rm th} \sim 120 {\rm M}_{\odot} {\rm pc}^{-2}$

Galactic Cloud

(3) Extragalactic *averages* include non-star forming molecular gas?

Compare

 $M_{gas}(\Sigma_{gas} < \Sigma_{th}) / M_{gas}(\Sigma_{gas} > \Sigma_{th})$

- ~4.6 (c2d+GB clouds; A_v>2)
- ~5.1 (Orion; A_V>2 Heyer, priv. comm.)
- A_v<2, factor of ~2 more molecular mass in Taurus (Goldsmith et al. 2008)

→ factor of ~10 more $M_{gas}(\Sigma_{gas} < \Sigma_{th})$ plausible, yielding agreement between Galactic clouds & Kennicutt-Schmidt relation

Predictions from this work

- Extragalactic studies average over large areas, star forming regions unresolved
- Measurements contains both diffuse & dense molecular gas
- Predictions and observational tests:

assume: $\Sigma_{SFR} \propto < \Sigma_{gas} > 1.4$ (K-S relation) if: $\Sigma_{SFR} \propto \Sigma_{dense} (\Sigma_{gas} > \Sigma_{th})$ (Galactic regions) then: $\Sigma_{dense} \propto f_{dense} < \Sigma_{gas} > \propto \Sigma^{1.4}_{gas}$ or $f_{dense} \propto < \Sigma_{gas} > ^{0.4}$ (Heiderman et al. 2010)

- At $<\Sigma_{gas}> \cong 300 \Sigma_{th}, f_{dense} \sim 1$

- Star formation is most efficient \rightarrow maximal starburst

Testing Models of Star Formation

Empirical relations have motivated two contradicting models:

1) free-fall model: $\rho_{SFR} \propto \rho_{gas}^{1.5}$ (Krumholz & McKee 2005, Krumholz & Thompson 2007)

2) Observations of density thresholds in Galactic clouds: SFR $\propto M_{dense}$ ($\Sigma_{gas} > \Sigma_{th}$) (Lada et al. 2010, 2012)

Semi-empirical Free-fall Model

 t_{ff} ∝ ρ^{-0.5} → ρ_{SFR} ∝ ρ_{gas}^{1.5} (Krumholz & McKee 2005, Krumholz & Thompson 2007)

 \rightarrow Consistent to the Kennicutt-Schmidt relation (N~1.4) within uncertainties

Theory: $\rho_{SFR} = f_{H2} \epsilon_{ff} \rho_{gas}/t_{ff}$ (Krumholz, Dekel, & McKee 2012) or: $\rho_{SFR} (M_{\odot} Myr^{-1} pc^{-3}) = 0.12 \epsilon_{ff} \rho_{gas}^{1.5} (M_{\odot} pc^{-3})$ $(\epsilon_{ff} = 0.01;$ Krumholz & McKee 2005)

 Find correlation between Class I YSOs and p_{gas} with a slope of 2

 \rightarrow inconsistent with the $t_{\rm ff}$ model prediction

- Krumholz, Dekel & McKee 2012 predict:
- $\Sigma_{\rm SFR} = f_{\rm H2} \, \varepsilon_{\rm ff} \, \Sigma_{\rm gas} / t_{\rm ff}$

- Krumholz, Dekel, & McKee 2012 predict: $\Sigma_{SFR} = f_{H2} \epsilon_{ff} \Sigma_{gas}/t_{ff}$
- Find steeper slope of ~1.9 in Galactic clouds

 \rightarrow inconsistent with the $t_{\rm ff}$ model prediction

 No convincing correlation for Galactic clouds compared to theory

Gas Density Threshold Model

Testing the Threshold Idea

Measure avg Σ_{SFR}, Σ_{gas}

 Low density: A_V<8 (Σ_{gas} < Σ_{th})
 High density: A_V>8 (Σ_{gas} > Σ_{th})

 YSO surface densities are factor of ~7-14 higher for A_V>8

→ 64% of all YSOs (77% Class I) lie in regions of dense gas (20% of total cloud area)

Evans, Heiderman, & Vutisalchavakul, 2013 in prep

Testing the Threshold Model

- Total YSOs ($A_V > 8; \Sigma_{gas} > \Sigma_{th}$)
- YSOs only:
 - SFR (M_{\odot} Myr⁻¹) = 0.032 $M_{dense}^{0.95}$
- YSOs + Clumps (w/ new SFR radio continuum (Vutisalchavakul & Evans 2013):
 - SFR (M_{\odot} Myr⁻¹) = 0.016 $M_{dense}^{1.1}$

Summary

- ~10 times more SF in Galactic clouds than predicted by extragalactic prescriptions (e.g. Kennicutt-Schmidt relation)
- Averaging over large scales may contribute to discrepancy between Galactic and extragalactic SFR-gas relations
- Tight linear relation between *dense* gas mass and SFR in nearby Galactic clouds
 - HCN is reasonable proxy for dense gas in galaxies
- free-fall time not important for predicting the SFR on small scales in Galactic clouds (steeper dependencies seen)