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! Turbulent Fragmentation (15)

The SFR per free-fall time is the e�ciency factor of a theoretical Schmidt-
Kennicut law,
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where ✏

wind

⇡ 0.5 accounts for mass loss through jets and winds, during the
formation of a star. This law only depends on the mean gas density and the
rms velocity of a star-forming region, so it is easily implemented in analytical
models and simulations of galaxy formation and evolution.

Focusing on the competition between supersonic turbulence and self-gravity,
the star-formation process can be shown to depend primarily on the ratio of
the turbulent kinetic energy, E

K

, and the gravitational energy, E
G

, of a star-
forming region. This ratio may be measured by the virial parameter introduced
by Bertoldi and McKee (1992),
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where �
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is the one-dimensional rms velocity, R and M the cloud radius and
mass respectively, and G the gravitational constant, and it has been assumed the
cloud is a sphere with uniform density. If the dynamical time is defined as the
ratio of the cloud radius and the three-dimensional rms velocity, ⌧
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The local SFR law - Definitions 
We can express the SFR in units of the free-fall time, as the efficiency factor of 
a theoretical Schmidt-Kennicut law:

We model εff  locally, meaning in regions with size, L, smaller than the driving 
scale, L0, of the ISM turbulence, L < L0, so we don’t worry about the large-scale 
driving, but only about the resulting local physical parameters (αvir , ℳS , ℳA ). 

         We find:

         where

In modeling galaxy formation, how should this SFR law be applied to large scales?   
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The physics of the local SFR (Eve’s talk, Christoph’s talk)

• The main consequence of supersonic turbulence is a very intermittent PDF of gas 
density: a fraction of the mass ends up in very dense filaments and cores.

• The PDF is universal and depends only on the rms Mach number of the turbulence 
(also magnetic field, compressing driving, E.O.S., .....).

• The sonic scale and the Jeans length define a critical density for collapse.

• The SFR can be expressed as the integral of the PDF above the critical density, 
divided by the free-fall time of the critical density. 

Krumholz and McKee (2005) 
Padoan and Nordlund (2011)
Chabrier and Hennebelle (2011)
Federrath and Klessen (2012)
Hopkins (2013) 
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These analytical models give us the general picture:
1. Turbulence can slow down star formation
2. Magnetic fields reduce the SFR even further 
3. The observed SFR is consistent with turbulent fragmentation
4. The fundamental parameters are those defining the turbulence with 

respect to gravity and thermal and magnetic pressure,αvir, ℳS , ℳA . 

These models are also very uncertain because the complexity of the 
problem forces us to make simplifying assumptions and approximations.

Assumptions, approximations and model predictions must be tested with 
numerical simulations, where much of the complexity can be retained.

We may even choose to adopt a local SFR law derived directly from 
the simulations, as long as the parameter space is well sampled. 
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Empirical SFR from numerical models

The fundamental length-scales, from large to small, are: 

• driving scale, L0  (largest turbulence turnover time)
• Jeans length, LJ,0 (gravity versus thermal pressure),
• sonic scale, LS (turbulence versus thermal pressure), 
• dissipation scale (smallest turbulence turnover time)

We must include LJ,0 and resolve LS, because the SFR is controlled by LJ,0/LS 
(the SFR is low because LS << LJ,0, that is the turbulence fragments the gas 
into small pieces, so it is the local LJ in the pieces that matters, not LJ,0 )

Depending on the approach, we may or may not include the driving scale, L0

Wednesday, June 26, 13



δV  [km/s] 

10 

                   

1.0

 CS

0.1    

The length-scales of star formation

0.01                    0.1                     1.0                     10                     100      L  [pc] 
  LS                                        LJ,0                                    L0 
sonic                                   Jeans                               driving  

local models with artificial driving

global models with large-scale physical driving
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Local models:  [LS , LJ,0] ➞ Lbox/dx ∼	 103 
(can be done in unigrid, but cheaper with AMR)

Limited range of scales is good for parameter studies
⟼ derivation of the local SFR law

Global models: [LS , L0] ➞ Lbox/dx > 105

(require AMR)

Very large range of scales is good for statistical studies 
of a large sample of subregions, within a single run, with 
realistic boundary and initial conditions
⟼ test for the local SFR law (intrinsic variance)
⟼ test the SFR law versus the size of the region

Wednesday, June 26, 13



Local models are quite idealized and must rely on random driving. 

Large parameter studies with such models have been recently 
carried out both with uniform grid simulations and with AMR.

Unigrid: Padoan and Nordlund (2011) 
AMR: Padoan, Haugbolle, Nordlund (2012), 
       Federrath and Klessen (2012)

Global models are a superior way to explore the parameter space, 
because they do not enforce artificial initial conditions, boundary 
conditions and driving forces on individual star-forming regions.

They are much more challenging and this is work in progress.
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200 pc scale - Planck
(ESA, LFI & HFI Consortia)

Supernova driving
20 pc scale - Herschel

(ESA, SPIRE& PACS Consortia)

Turbulent cascade

5 pc box
Large-scale

random force

A chunk of a MC:

Periodic Box
Random forcing
Isothermal E.O.S.
Self-gravity
Sink particles

Local models below the physical driving scale
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Numerical setup:

•Periodic boundary conditions
•Random, large-scale force
•Uniform initial magnetic and density fields
•Random initial velocity field
•Isothermal equation of state
•Root grid: up to 323 - 1283

•AMR levels above root grid: 8 (32,7683)
•Sink particles, ρsink = 105<ρ>             

Parameter space probed
with 45 simulations:
 
ℳS =10, 20 

ℳA =33, 20, 5, 1.25

tff /tdyn =0.4 - 3.1
(αvir = 0.22 - 13.5)

Adaptive Mesh Refinement Simulations
(Pleiades at NASA/Ames and Supermuc at Leibnitz Research Center)

AMR code: Our own extra scalable version of Ramses, with a hybrid layout, using 
OpenMP within individual nodes, and MPI between nodes.
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1000 M⊙◉☉⨀ in a 5 pc box - 60 AU resolution
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The minimum SFR
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Results
1. 𝜺ff  decreases exponentially with increasing values of tff /tdyn

2. 𝜺ff has almost no dependence on ℳS 
3. 𝜺ff  has a weak dependence on ℳA

For characteristic values of ℳS  and ℳA  in molecular clouds, we can 
therefore express the local SFR law as:

This law only depends on the density and rms velocity of a star forming 
region, so it is easy to implement. But we need to test if/how it applies to  
different scales, including nested hierarchical structure, in order to use it 
as a sub-grid model for galaxy formation simulations.
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Hierarchical structure and the local SFR law
Is our result self-consistent in the hierarchy of ISM structures?

ni is the number of 
sub-regions of size
Ri within a larger
region of size Ri+1

The SFR at two different scales in a hierarchical structure must satisfy:  

There are indications that 𝜺ff does not depend on scale, because tff/tdyn (orαvir) is 
constant if both Larson relations are satisfied. Then the condition is satisfied.

the virial parameter can also be expressed as
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The SFR at two di↵erent scales in a hierarchical structure must obey the
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From the definition of the free-fall time, assuming fractal structure with dimension 
D, and a power law mass-size relation,

we get 

Given that we found that 𝜺ff  has an exponential dependence on parameters, this 
condition can be satisfied for all R only if 𝜺ff does not depend on scale. This implies 

Notice that in the simple case of mass conservation,

we would get the simple result

we get
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is a uniform density medium. (The other extreme case is when all star-forming
mass is concentrated in one core, D = 0, thus � = 1)

In any other non-trivial case, D is di↵erent (and smaller) than �. Hence
the condition for the consistency of the SFR in a hierarchical structure is that
mass conservation is violated, meaning that the sum of the mass of small-scale
star-forming regions doe snot add up to the total mass of the system. There
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smaller regions. This corresponds to the well known fact that the SFE increases
as we select smaller regions of star formation (all the way to a single protostellar
core).
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is the number of star-forming regions at scale R
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From the definition of the free-fall time:
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Assuming fractal structure with dimension D, and mass-size relation with
exponent �,
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If ✏
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does not depend on scale, then we get

D = (� � 1)3/2

Notice that in the simple case of mass conservation,
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we would get
D = �

while our SFR condition gives D = � only in the trivial case of D = 3, that
is a uniform density medium. (The other extreme case is when all star-forming
mass is concentrated in one core, D = 0, thus � = 1)

In any other non-trivial case, D is di↵erent (and smaller) than �. Hence
the condition for the consistency of the SFR in a hierarchical structure is that
mass conservation is violated, meaning that the sum of the mass of small-scale
star-forming regions doe snot add up to the total mass of the system. There
must be lots of (sterile) gas that is left out of star formation as we move to
smaller regions. This corresponds to the well known fact that the SFE increases
as we select smaller regions of star formation (all the way to a single protostellar
core).

In our case, ✏
↵

does not depend on scale if the virial parameter does not
depend on scale (e.g. if Larson relations are both satisfied, but the whole point
here is to understand the origin of the mass-size relation, not to assume it).

So in that case, that is � = 2 and D = 3/2 everything is self-consistent.
But for our condition to be true in general, that is for any scale R, it must

be that ✏
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does not depend on scale. Using the definition of free-fall time and
dynamical time, and assuming u ⇠ R

↵, the argument of the exponential is
⇠ R

(2↵+1��)/2

so the SFR condition is a transcendental equation of the form:
exp(�R

a) = R

b

where
a = (2↵+ 1� �)/2
b = D � (� � 1)3/2
Clearly this equation cannot be satisfied for every R, for whatever values of

a and b.
In other words, because we find a strong (exponential) dependence of ✏

↵

on
parameters, the SFR condition can only be satisfied if ✏

↵

does not depend on
scale.

For our specific SFR law, this implies both
� = 2↵+ 1 ⇡ 2
(from the argument of the exponential) and
D = (� � 1)3/2
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Evidently, when selecting star-forming regions we are not conserving mass, in 
the sense that as we go to smaller regions we leave out an increasing amount 
of gas that is not involved in star formation.

From the scale independence of 𝜺ff , and using v ~ Rα, we also get

and therefore

In summary: 
When we select star-forming regions on different scales in the hierarchy, 𝜺ff 
must be scale independent, the mass fraction of gas involved in star formation 
must decrease with scale (SFE increases towards smaller scales), and such 
regions must be organized in a very filamentary structure (D=1.5), and their 
column density should be roughly independent of scale.

For our specific SFR law, this implies both

� = 2↵+ 1 ⇡ 2

(from the argument of the exponential) and

D = (� � 1)3/2

as discussed above. Hence we also have:
D = 3↵ ⇡ 1.5
So we have learnt that the SFR conservation relation implies that
1) D and � are distinct, but related to each other by D = (� � 1)3/2
2) ✏

↵

must be independent of scale (at least if it is a sensitive function of
parameters)

3) These two relations must hold: � = 2↵+ 1 ⇡ 2, D = 3↵ ⇡ 1.5.
In summary, if we select star-forming regions on di↵erent scales, they must

obey a mass-size relation corresponding approximately to constant column den-
sity, and they must form a structure with fractal dimension close to 1.5, in
between filaments and sheets (hence predominantly filamentary in projection).

This is a consequence of selecting regions within a hierarchical structure
where we cannot violate the global SFR value. This selection cannot be mass
conserving, meaning that as we go to smaller and smaller scales we must leave
out more and more gas that evidently is not involved in star formation (but get
counted on larger scales).
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So maybe our local SFR law can be applied to any scale below the 
driving scale, but we really need to check that.

This requires “global” numerical models including the SN driving scale.

IMPORTANT NOTE (why millions of cpu hrs on supercomputers?): 
The numerical models should include a level of complexity and 
realism much higher than the analytical models we want to test. 
Over-simplified numerical models (2D, no magnetic fields, insufficient 
resolution) do not really test the assumptions of equally over-
simplified analytical models, and they too easily match the analytical 
predictions...... 
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M31 (NASA/JPL-Caltech)

Global models including the driving scale 

A chunk of a galaxy:

Supernova driving
Heating and cooling
Galactic potential
Self-gravity
Sink particles

Wednesday, June 26, 13



M31 (NASA/JPL-Caltech)

Global models including the driving scale 

A chunk of a galaxy:

Supernova driving
Heating and cooling
Galactic potential
Self-gravity
Sink particles

Wednesday, June 26, 13



n                   B                T

250 pc

1 
kp

c

Range of scales:  
1-32x103 pc - 10-2 pc

(17M cpu hr - PRACE grant on Supermuc)

Best so far: dx=2 pc (Hill et al. 2012)

• We can measure the SFR in many different 
clouds, with different αvir, ℳS , ℳA

• We can derive the SFR law, SFR = f(αvir, 

ℳS , ℳA).
• We can test the scale invariance 
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Conclusions
1. We understand how turbulent fragmentation leads to the observed 

low star formation rate, and we can model that
2. We have derived a local SFR law directly from local numerical 

models, with a parameter study based on many AMR simulations
3. The SFR per free-fall time has a simple exponential dependence 

on the virial parameter
4. This local law only depends on density and rms velocity of a star-

forming region, and should be applicable to any scale below the 
driving scale, thus easy to use in modeling galaxy formation 

5. Global numerical models including the SN driving scale will provide 
a necessary test for this law and its dependence on scale.
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