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Parsec-scale galaxy simulations with detailed feedback

RAMSES AMR code (Teyssier 2002)
1-5pc and 100-1000M,, resolutions

Cooling down to <100K

Stellar feedback:
local efficiency of 1-2% per free-fall time (at 1-5pc)

Stellar feedback:

- photoionization: Hll regions around young stars,

computed with a Stromgren-sphere approximation
(Renaud+13)

- radiation pressure: available momentum mxv
what is m and what is v?
most momentum is carried by ionizing photons
no need to impose v=vy as done in other models

escape
(Renaud+13)

- supernovae feedback with energy dissipation rate
adjusted for non-thermal processes (~2Myr)
(Teyssier+13)




High-redshift disk models
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- Typical Milky-Way progenitors at z=2

- High gas fractions around 50%
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/ - Specific SFR ~1Gyr
e X N
| ¥
R ¢ Such models naturally get :
‘adk ™ - strong turbulence 50 km st

- giant clumps of 10%°M,
(also diffuse gas and small clouds)

- instability-driven inflows

(Noguchi+99 Immeli+04 Bournaud+07,12 Genel+12...

Open issues:

Get the needed outflows?

Gas density maps every 150Myr

Short-lived clumps?

Stellar mass evolution?

Optical imaging at z=2, Barro+13 Bournaud et al. 2013, Perret et al. 2013



Galactic-scale outflows and clump-scale outflows
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escape

Bournaud, Perret, Renaud et al. 2013



Clump-scale outflows
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At the scale of clumps:
- Outflow rate of the order of SFR,

- Bursts at several times the SFR,

weaker outflow if weaker SN feedback

simulated spectra (here face-on galaxy orientation)
have broad components tracing the outflow

gas mass (flux)

relative velocity (km s-1)

Bournaud et al. 2013



1x2kpc snapshots
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These feedback-driven outflows:
- Disrupt small clumps and GMCs, as should be

- Do not prevent giant clumps to survive for 100s of Myr

1.5x1.5kpc
snapshots

Time evolution of a 103°M_, giant clump over 600Myr Bournaud et al. 2013



Clump evolution, accretion, and dynamical mass loss
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-- Median stellar age in a clump
rarely exceeds 200Myr,
even for 700Myr-old clumps

-- At the same time clump accrete
gas from the surrounding gas,
at a few Myyr?, compensating

for the outflows
(see also Dekel & Kumholz 2013)
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Clumps also loose their aged stars by
dynamical evaporation, galactic tidal field.

Loss rate close to SFR,
timescale for a star to leave the clump ~200Myr
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Long-lived self-resulated clumbs

wavelength (um)

Clump C ) | Clump B

o —
| N
A

+ Wind B

Normalized Flux

Observed outflows from giant clumps,

- Balance of inflows and outflows. Genzel et al. 2011, Newman et al. 2012

Giant clumps survive with a roughly
constant mass and migrate in the dis
can grow the central bulge

- Clumps launch outflows

- Clump stellar populations remain young (100-200Myr)



median log(age,) [Gyr]

Long-lived self-regulated clump
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can grow the central bulge Elmegreen& Elmegreen 2005

- Clumps launch outflows

- Clump stellar populations remain young (100-200Myr)



Do these giant (long-lived) clumps change SF laws?
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SF efficiency, even at the scale of big clumps

Same driving processes at in nearby spirals (gravity + turbulence cascade + feedback)

The density PDF is log-normal (or very close to)



Origin of (strong) turbulence




Origin of (strong) turbulence

Here the observed “Q=1 level” turbulence
is powered by gravitational energy,
feedback was turned off.

Both processes saturate at Q=1
impossible to disentangle in a simulation

Gravity can be enough,
But we need some feedback for regulation

Gravity (instabilities+inflow)
Can power realistic dispersions
>20km/s everywhere

50+km/s near the clumps

S\ 2.84

Small-scale power spectrum
degenerates over time
with gravity only

log(k)




Some externally-driven turbulence?

With accretion Without accretion

External mass infall (idealized cold flows)
can increase the dispersions by a factor of 2-3,
compared to internal sources(gravity+feedback)

500H/cc

| 089 7 25

1H/cc Edge-on disk views

Gabor & Bournaud in prep. (central 10kpc)



|s star formation different in mergers ?

Yet another simulation of the Antennae,
but at least the SF histories converge.

Here the central 15kpc at the “observed” instant










Can models converge on the SF history of mergers?
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- The SF history converges at 2-4pc resolution
- The ability to resolve gas fragmentation/cloud properties (i.e. resolution) has more

impact than the chosen code, the interaction orbit, the SF and feedback models
- Post-starburst conditions in today’s Antennae, in particular in the overlap region




Dense gas excess from the tidal interaction
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- Excess of high-density gas appear rapidly after the pericenter.
- The global galactic density has not changed (yet) — no nuclear inflows

- Increased fragmentation and turbulence associated to the dense gas excess



Increased turbulence is a key starburst triggering mechanism
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The SF burst is

1 - correlated to the excess of high-density gas
2 - associated to a peak in

the gas non-thermal dispersion,

which is a cause ratherthan a consequence
(still there if feedback is turned off before the burst)

10g(M(0gas>Pmax €M)/ M(0ges>100cm ™))

log(SFR [Mg yr™'])

Powell et al. 2013



A different mode of SF in mergers

' ' ' ' ' Renaud et al. 2012, Powell et al. 2013, Kraljic et al. in prep.
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There is a different mode (even if not all mergers all the time) log 2gas (Msun pe-2)

Here higher density turns into higher SF efficiency
Why? Because at a surface given density, there is an excess of high-3D-density gas on small-scales
Why? The turbulent speed is higher (50km/s vs 10km/s in spirals), turbulence can compress gas...

But this was also true in high-redshift disks. So, is the turbulent forcing different in mergers?

s usual regulation overcomed? (see Federrath+12 idealized turbulence models)



|s star formation different in galaxy centers?

Renaud et al. 2013, sub-pc-scale MW simulation
Central SF analysis by Emsellem et al. in prep.



Resonances
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Emsellem Renaud et al. in prep



Sites of Star formation
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No SF inside the bar

Emsellem Renaud et al. in prep




Star formation versus Gas

new Stars:: -

Emsellem Renaud et al. in prep



Star formation in the Bar

~ Shear and Tidal forces
=» tidal forces are weak within the bar
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Emsellem Renaud et al. in prep



Gas inflow within the bar

~ A few 107 Msun of gas inside 2 kpc
~ But star formation does NOT iust follow the aas inflow
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Emsellem Renaud et al. in prep



Central Structure

mass involved ~ 10% Mg (SMBH = 4x108 My)

Emsellem Renaud et al. in prep




The central 200pc
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Center of NGC1365
see Elmegreen Alloin et al.

Emsellem Renaud et al. in prep



Conclusions - Star formation in high-density environments

High-density doesn’t imply high efficiency star formation:
High-redshift disks have very peculiar dynamics (long-lived giant clumps, mass inflows)
but their SF efficiency is just « normal »

High gas densities are met in mergers and in this case the SF efficiency can become much higher,

for the same global surface density of gas.
This relates to stronger turbulence and dense gas excess, not nuclear inflows, but requires

a different turbulent forcing to be explained (?)

At the opposite SF and nuclear fueling can be quenched and delayed, with only cyclic triggering,
in the high-density centers of spiral galaxies — stellar bars impose strong shear and ILRs



Conclusmns Star formation in high-density environments
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