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What controls star formation in the Central Molecular Zone?
(JMDK+13, MNRAS submitted, arXiv:1303.6286)

Why do galactic star formation relations

break down below a certain spatial scale?
(JMDK & Longmore 13, MNRAS submitted; JMDK, Schruba, Longmore, Bigiel, in prep.)

Galactic Longitude

Diederik Kruijssen
MPA Garching

with Steve Longmore, Bruce Elmegreen, Norm Murray, John Bally,
Leonardo Testi, Rob Kennicutt, Andreas Schruba, Frank Bigiel



SF relations CMz Introduction

Conclusions

The CMZ & spatially resolved star formation relations Slide 2

Diederik Kruijssen — Max Planck Institute for Astrophysics

JMDK+13, MNRAS submitted, arXiv:1303.6286



SF relations CMz Introduction

Conclusions

The CMZ & spatially resolved star formation relations Slide 3

Diederik Kruijssen — Max Planck Institute for Astrophysics

The gas density PDF
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< Log-normal with median and dispersion set by Mach number
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The density threshold for SF

<> Mach number in the CMZ ~ 70, mean density n, ~ 2 x 104 cm-3

< Current SFR: less than 0.5% of gas above density threshold for SF

<> Required threshold density for star formation is n > 107 cm-3
(cf. the n ~ 104 cm-3 that is observed by Lada+10 in the solar n’hood)
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A low SFR in the CMZ: why?

< Toomre or shear stability

Gas not self-gravitating
except in 100-pc ring

< Episodic star formation

Evidence of previous
star formation is seen

< Cloud disruption by tidal shocks

<> Galactic tidal field

<> Turbulence

increases with M2
Predicts n ~ 108 cm-3

— 2
Lturb = n/'nO = Az ayiyM
Krumholz & McKee 05, Padoan & Nordlund 11

Niurb = TrurbNo ~ 2 X 10% ecm™

3, CMZ

Yes
Maybe/partially
No

Density threshold for SF

104 Crn_3 Solar neighbourhood
(cf. Lada+10 threshold of 104 cm-3)
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What is driving the turbulence?

< Turbulence dissipates on a vertical crossing time (f . ~ 3 Myr)

< Classical turbulence drivers fail in the CMZ
(magnetorotational & gravitational instabilities, outflows, ionizing radiation, SNe)

<> Bar inflow not sufficiently energetic if steady-state (t ;. = 10 — 20 Myr)
Krumholz & JMDK, in prep.

< Episodic star formation: final piece of the puzzle...?
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A self-consistent cycle of star formation?

<~ Different plausible mechanisms may affect different stages of a single cycle

high, environmentally- gas mass builds up
dependent density to threshold for
threshold for star formation gravitational instability
Krumholz & McKee 05 #j\ Padoan & Nordlund 11
turbulent cascade Kritsukc+11
gravitational instability
THEORY o N drives gas to density
acoustic instability threshold for star formation
of in-flowing gas
Montenegro+99 <
S
galactic-scale starburst and §
gas inflow gas consumption w
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Implications & speculation

< Scenario needs detailed observational & numerical testing

< Extragalactic work will provide additional constraints

< “Prediction”: ~1/3 of galaxy centres super-Kennicutt, ~2/3 sub-Kennicutt

< Key question in galaxy formation simulations: which SF recipe?

= Numerical simulations with a classical Schmidt-type SF recipe
cannot accurately model the gas and SF physics of the CMZ

< Key question in SMBH growth: how to keep gas from forming stars?
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An uncertainty principle for star formation

Time

Gas Stars

tgas

tstar

tover

< If the physics of SF are universal:
time-integration of single region gives galactic SF relation
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An uncertainty principle for star formation

Time

Gas

Stars

tgas

tstar

tover

<> What does this mean in practice?

<~ To retrieve galactic SF relation from
observations: need (at least) one region
in aperture that contains the “shortest” tracer

< Example for f . = 9 x £

tar

ap
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An uncertainty principle for star formation

Time

Gas Stars

Lgas

tstar

tover

<> What does this mean in practice?

<~ To retrieve galactic SF relation from
observations: need (at least) one region [
in aperture that contains the “shortest” tracer

< Example for s = 2 X L,
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An uncertainty principle for star formation
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An uncertainty principle for star formation

Number of independent
regions within aperture
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An uncertainty principle for star formation
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An uncertainty principle for star formation

Az A2 > \rt/2

Size-scale over which  Duration of Size-scale of Total duration
SF relation is shortest SF independent of the SF process
spatially averaged phase regions

If this condition is satisfied, the “shortest”
tracer is always well-sampled within the aperture

=» Galactic SF relation is retrieved

ap
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Three different minimum size-scales
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Application with a (very) simple 1D disc galaxy model

<> Logarithmic potential (V = 200 km s, solid-body in central kpc)

< Exponential gas surface density profile with:
- 3(0) = 200 M, pc?
- R, =2.5 kpc
- 0 =10 km s (in central kpc o = 50 km s°1)

< Zger profile by assuming a large-scale Schmidt-Kennicutt relation

< Size-scale of independent regions is assumed to be Toomre length

v tstar

< byas ~ R, tgar = 2 Myr (Ha) and £, = 0 Myr
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Variation of minimum size-scale(s) with galactocentric radius
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Effect when randomly placing an aperture

:“‘ “ Gas
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Predicted scatter versus (randomly placed) aperture size

see e.g. Schruba’s talk
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Predicted scatter versus (randomly placed) aperture size
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Effect when placing an aperture on peaks of gas or star formation
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Gas depletion time bias versus (specifically placed) aperture size
see e.g. Schruba’s, Faesi’s talks
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An uncertainty principle for star formation

< Simple interpretative framework

< Potentially very powerful to obtain:
- time-scales involved in SF process (duration, “cloud” lifetimes, etc.)

- time spent by gas at different densities (by combining different tracers)

- size-scales of independent regions

< Small-scale SF relations are fundamentally different to galactic SF relations
cf. Lada+10, Heiderman+10, Gutermuth+11

<~ First verification with observations underway
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Observed scatter versus aperture size: small galactocentric radii
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Observed scatter versus aperture size: large galactocentric radii
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Observed scatter versus predicted minimum size-scale: small aperture
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Observed scatter versus predicted minimum size-scale: large aperture
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Comparison to observations

<~ First results: observations follow simple framework

=» Future applications desirable

<> Some confidence applying framework: CMZ has Ax,,, = 80 pc

=>» Discrepant SFR in the CMZ is not due to statistical effects
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