Star Formation at Low Metallicity

ADAM LEROY (NRAO)

Less metals mean less dust.

FISHER ET AL. (SUBM.), GALAMETZ ET AL. (2009), DRAINE ET AL. (2007)

Covariant with stellar, gas, kinematic structure.

CO HI velocity stars star formation

Covariant with stellar, gas, kinematic structure.

Surface Density

Structural differences affect cloud formation.

Lower columns mean less molecules

Big, high SFR low-metal galaxies (esp. at high z)

1

MANNUCCI ET AL. (2009, 2010)

Molecular gas (CO) very hard to observe.

WLM – first CO detection below 12+log O/H ~ 8.0

ELMEGREEN ET AL. (2013)

- Low metals mean less dust
- Dust affects visibility of gas (CO), H₂-HI balance
- Z covariant with gas, stellar, kinematic structure
- Column correlates with H₂-HI balance
- SFR as a third parameter / redshift evolution
- CO faint, despite pervasive star formation

SFR globally tracks HI, with mass dependence.

In the local volume SFR tracks HI, t_{dep} ~ 1 to 0.1 Hubble times

2

LEE ET AL. (2009)

SFR globally tracks stellar content.

2

Doubling time <~ 1/2 Hubble time, less clear slope than HI

SFR/CO increases as metallicity drops

2

Global ratio SFR/CO sharply increases with dropping Z at high/low z

Metallicity (12 + log O/H)

SCHRUBA ET AL. (2012), GENZEL ET AL. (2012)

SFR still coincident with H₂, local scaling

2

Even as ratio changes, SFR and H_2 still show similar distribution.

BOLATTO, LEROY ET AL. (2011), JAMESON, BOLATTO ET AL. (IN PREP.)

SFR and CO track in HI dominated regime.

2

More generally, SFR still tracks molecular gas in HI-dominated regions.

Gas Surface Density [M_{sun} pc⁻²]

SCHRUBA ET AL. (2011)

SFR tracks older stars in nearby dwarf galaxies.

Dwarfs in color, spirals in gray

2

HUNTER ET AL. (1998), LEROY ET AL. (2008)

- Global SFR tracks HI (with some slope)
- Global SFR tracks stellar content
- SFR/CO increases with dropping metallicity
- SFR still associated with CO where HI dominates
- SFR broadly occurs where there are stars

3 PDR Structure: H₂, HI, CII, and CO Dust controls UV extinction and physical sizes of regions Self & cross shielded HII $C^+ + e^- \rightarrow C$ $C + OH \rightarrow CO + H$ $C^+ + S \rightarrow C + S^+$ $CO + \gamma \rightarrow C + O$ $C + \gamma \rightarrow C^+$ \mathbb{C}^+ C ()increasing A_v $A_v \sim 1$ $A_v \sim 2$ Tielens & Hollenbach (1985) Dark cloud HII region PDR

 $T \sim 1,000$ to 10 K

 τ_{co} =1 surface

 $T \sim 10 \text{ K}$

T~10,000 K

3 CO and H₂ surfaces shrink with decreasing Z Dropping metallicity pushes H₂ in, CO in even faster H_2 Ζ

MALONEY & BLACK (1988), BOLATTO+ (1999), RÖLLIG+ (2006), BOLATTO+ (2013)

PDR Structure: H₂, HI, CII, and CO

3

Being atomic and not molecular doesn't prohibit cold gas

Density

GLOVER & CLARK (2010, 2012)

Stars can form before molecules pervade

3

At low enough metallicity, stars may form before molecules dominate

PDR structure confuses CO observations

3

Observing these effects complicated by our tracers.

10 20 30 40

 W_{co} [K km s⁻¹]

 10^{20} 10^{21} 10^{22} 10^{23}

column density $[cm^{-2}]$

GLOVER & CLARK (2012)

3

PDR structure confuses CO observations

Shielding with constant surface density (Wolfire et al. 2010)

BOLATTO, WOLFIRE, & LEROY (2013), SANDSTROM ET AL. (2012)

- Dust abundance affects PDR structure
- Relative sizes of H_2 , HI, CO, CII regions change
- HI can cool to star forming temperatures
- Conversion factor remains a challenging issue
- α_{CO} and f_{mol} hard to disentangle observationally

4

Less diffuse emission, individual clumps (100-1000 M_{sun}) resolved.

4

Possible to resolve PDR structure comparing dust, CO, HI, A_V

LEROY ET AL. (2009), ROMAN-DUVAL ET AL. (2010), ROMAN-DUVAL ET AL. (IN PREP)

Cloud populations extend GMCs into diffuse MW gas

Surface brightness lower at low metallicty

Mostly consistent with lower surface density, still bound clouds

- ALMA resolves pc-scale clumps near 30 Dor
- Resolved dust-based H₂ and CO show PDR
- Low-z Local Group clouds extend spiral scalings
- Lower CO surface brightness
- Consistent with bound, low surface density clouds

What to look for next...

5

Statistics, populations in SFR/CO

5

So far we have bright, low hanging fruit Robust samples across a range of redshifts...

KRUMHOLZ, LEROY, AND MCKEE (2011), SCHRUBA ET AL. (2012), GENZEL ET AL. (2012)

Resolve, overconstrain clouds

5

Combining CII, dust, CO, HI at high resolution "Milky Way" view of low metallicity clouds...

INDEBETOUW ET AL. (SUBM.), ROMAN-DUVAL ET AL. (IN PREP)

Beyond CO at low metallicity

Molecules beyond CO have been challenging beyond the LMC... Physical conditions, dense gas fraction at low metallicity

5

HCO+ in the LMC: SEALE, OTT, WONG, ET AL. (2012)

