Einfuehrung in die Astron. & Astrophysik I

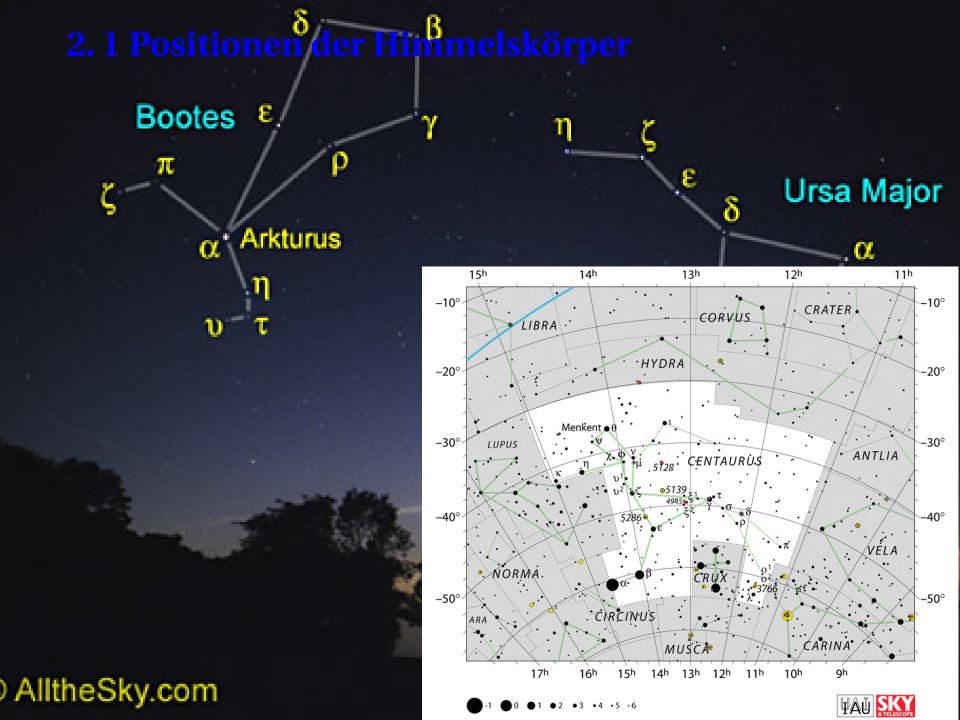
Wintersemester 2013/2014: Henrik Beuther & Christian Fendt

```
17.10 Einfuehrung: Ueberblick und Geschichte (H.B.)
24.10 Koordinatensys., Sternpositionen, Erde/Mond (C.F.)
31.10 Teleskope und Instrumentierung (H.B.)
07.11 Strahlung, Strahlungstransport (C.F.)
14.11 Planetensystem(e) und Keplergesetze (H.B.)
21.11 Sonne & Sterne, Typen, Klassifikationen, HR-Diagramm (C.F.)
28.11 Interstellare Materie: Chemie und Materiekreislauf (H.B.)
05.12 Sternentstehung, Akkretionsscheiben und Jets (H.B.)
12.12 Sternaufbau und Sternentwicklung: Hauptreihe (C.F.)
19.12 Sternaufbau und Sternentwicklung: Endstadien (C.F.)
26.12 und 02.01 -
09.01 Mehrfachsysteme und Sternhaufen, Dynamik (C.F.)
16.01 Exoplaneten und Astrobiologie (H.B.)
23.01 Die Milchstrasse (H.B.)
30.01 Zusammenfassung (C.F. & H.B.)
```

08.02 Klausur, 15:00-17:00, Philosophenweg 12, alle 3 Hoersaele

• Prüfung am 8.2.2014, 15:00 s.t. - 17:00

- Philosophenweg 12:
- GHs: Gruppen A (Bialas), B (Thygesen), C (Baczynski)
- KHs: Gruppe D (Qian)
- NHs: Gruppen E (Kozlikin), F (Mitchell)
- 6 Klausuraufgaben je 10 Punkte

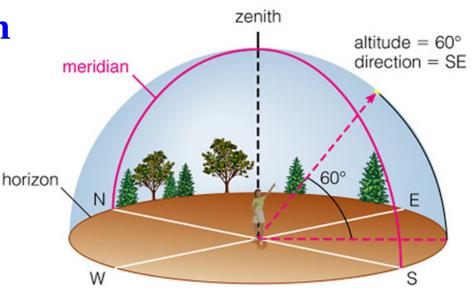

•Wichtig:

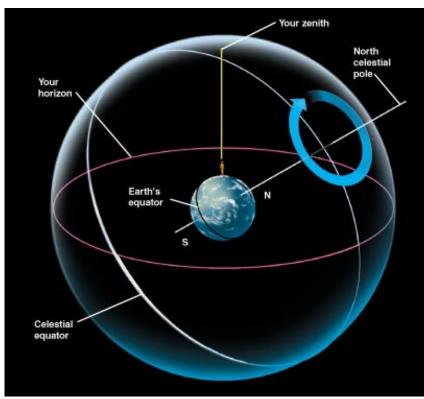
- (1) Bitte alle 6 Fragen auf separaten Blättern beantworten!
 (Blaetter werden zur Verfuegung gestellt)
- (2) Auf jedes Blatt Namen und Matrikelnummer schreiben!
- (3) Elektronische Geräte mit Möglichkeit zur Datenübertragung
- müssen ausgeschaltet in der Tasche bleiben!
- (4) Ein handgeschriebenes DinA4 Blatt (beidseitig) erlaubt.
- (5) Taschenrechner mitbringen (kein Computer!).

- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Sternpositionen/ Himmelskoordinaten

2.2 Himmelskoordinaten


Problematik:


Orientierung @ Beobachtungsplatz:

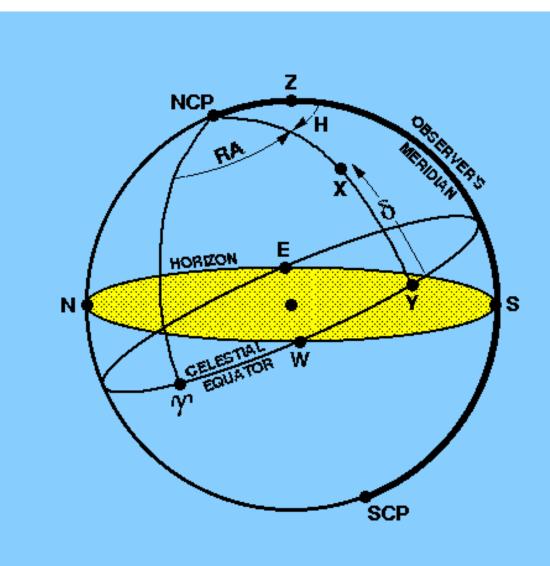
- -> horizontale Koordinaten (Zenit, Horizont)
- -> "feste" äquatoriale Koordinaten
 - -> fest für den Standort, aber nicht am Himmel

Orientierung @ Himmel:

- -> "mitbewegte" äquatoriale Koordinaten
- -> festes Koordinatensystem am Himmel,
 - -> Ausgleich der Bewegung der Erde
- -> sphärisches Koordinatensystem am Himmel

2.2 Himmelskoordinaten

Mitbewegtes äquatoriales Koordinatensystem


Koordinaten:

Rektaszension α:

R.A. (engl. right ascension): Winkeldifferenz zwischen Stundenwinkeln von Objekt und Frühlingspunkt γ

Dekination δ:

wie im ortsfesten Äquatorialsystem, Winkeldistanz vom Äquator (-90°...+90°)

2.1 Positionen der Himmelskörper

Sterne = "Fixsterne"

Scheinbar zeitlich feste Anordnung am Himmel: Sternbilder (Planeten = "Wandelsterne")

"Fest" nach historisch-menschlichem Maßstab:

Position der Sterne am Himmel veränderlich:

- 1) Himmelskugel dreht sich scheinbar wegen Erdrotation (täglich)
- 2) Erdbahn um die Sonne, Parallaxe (jährlich) -> Entfernungsmessung
- 3) **Eigenbewegung** der Sterne: **Pekuliarbewegung**, bis 10" pro Jahr (Radialgeschwindigkeit, Änderung in Entfernung, bis zu ~ 300km/s)
- 4) Kreiselbewegung der Erde in 26000 Jahren: Präzession
- 5) Bahnbewegung von Mehrfachsternen (Massenbestimmung)
- 6) Aberration: Erdbewegung gegen Lichteinfallsrichtung
- 7) Refraktion der Erdatmosphäre bis 30'

2.1 Positionen der Himmelskörper

Parallaxe: Nahe Sterne werden auf verschiedene Positionen

am Himmelshintergrund projeziert, wenn sich die

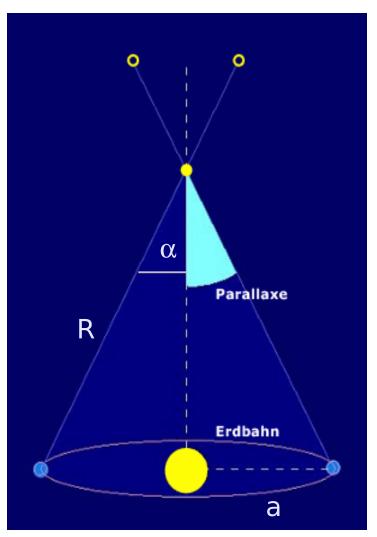
Beobachterposition verändert

-> Erdbahn -> jährliche Parallaxe π

$$\pi \equiv \alpha \simeq \sin \alpha = \frac{a}{R}$$

a = Abstand Erde-Sonne = 150 Mio km

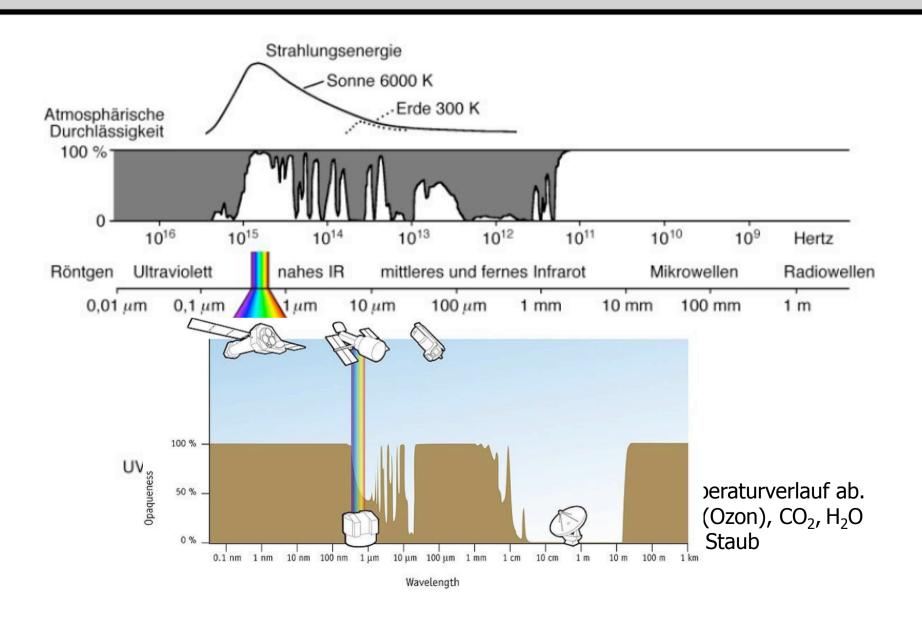
(=1 AE, astronomische Einheit)


R = Abstand des Sterns

-> Entfernungsmessung

$$\pi["] = 1 / R[pc]$$

-> Definition: "parsec", pc


$$1pc = 206,265 AE = 3.26 Lj$$

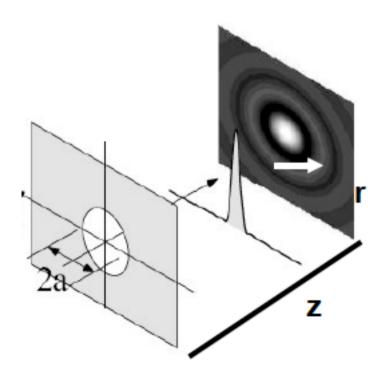
- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Transparenz der Erdatmosphäre I

Aufloesung eines Teleskops

$$r_{Airy} = m * z\lambda/(2a)$$

= $m * f\lambda/D$


f: Fokuslaenge

D: Teleskopdurchmesser

φ: Aufloesung

→Im Fokus: $\phi = m * \lambda/D$

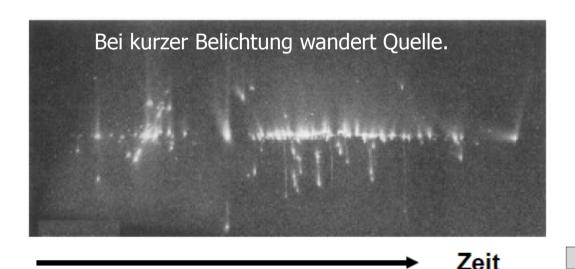
Mit m=1.22 im 1. Minimum

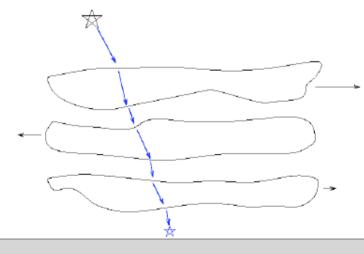
Beispiele:

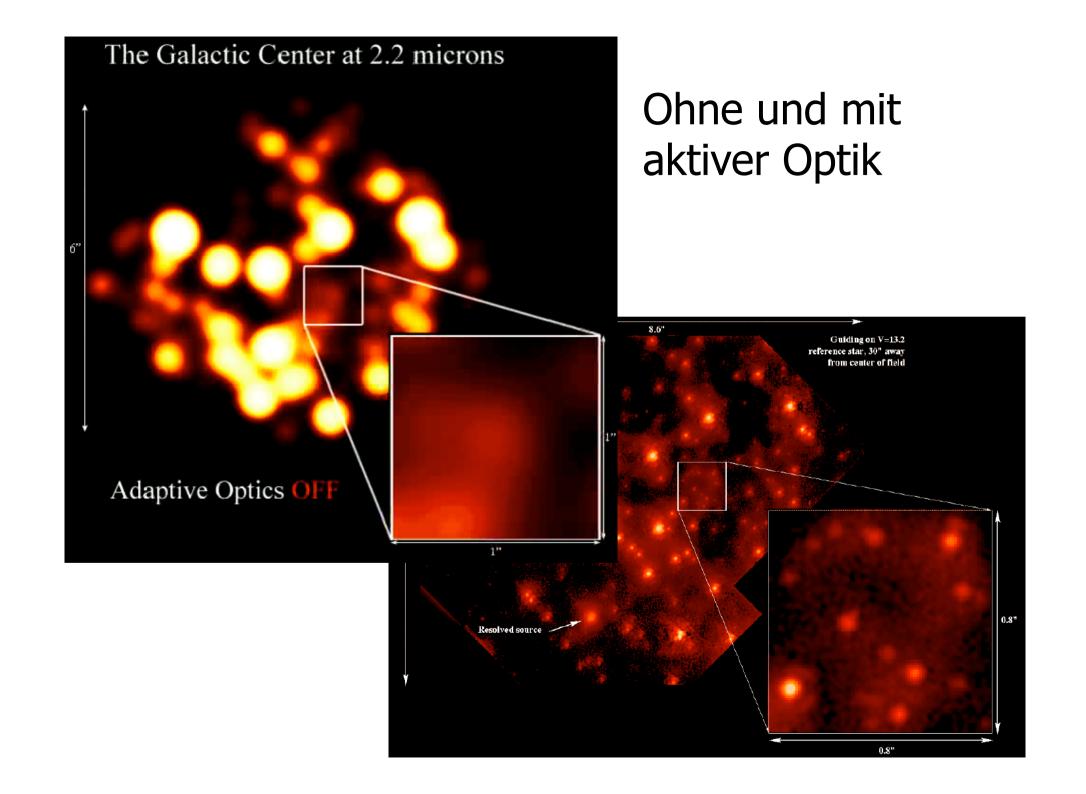
Optisch: λ =550nm, D=8m $\rightarrow \phi$ =0.02"

Mitinfrarot: $\lambda=12\mu m$, D=8m $\rightarrow \phi=0.38''$

Radio: λ =1.2cm, D=100m $\rightarrow \phi$ =38"

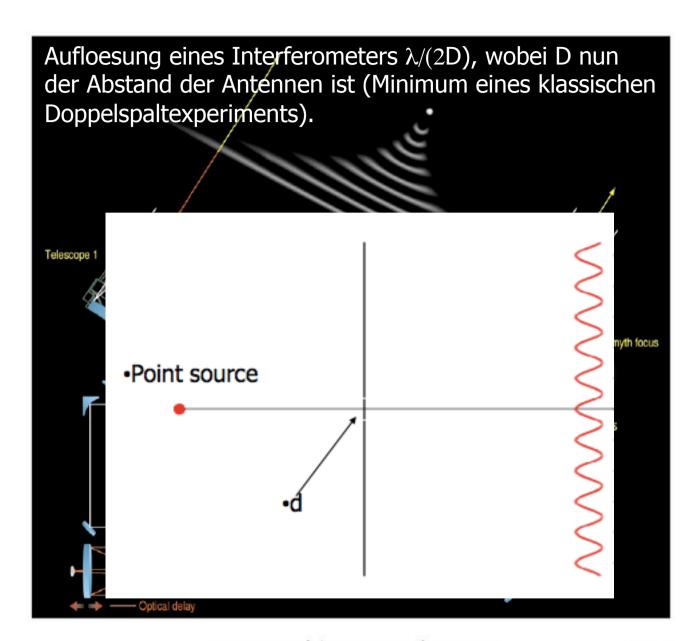

Radio Interferometer:


 λ =1.2cm, D=10km $\rightarrow \phi$ =0.3"


Szintillation und Seeing

- Aufsteigende Blasen, sich verschiebende Schichten der Atmosphaere koennen schnelle Bewegungen und Helligkeitsaenderungen bewirken
- → Das Seeing ist definiert durch die Halbwertsbreite des Bildes einer Punktquelle

Oftmals Seeing im Optischen 1-2". Beste Standorte Hawaii, Chile mit Seeing von ca. 0.5" ueber 50% der Zeit. Optimal ca. 0.25".

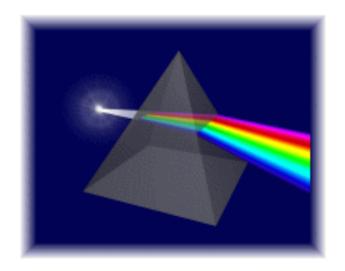


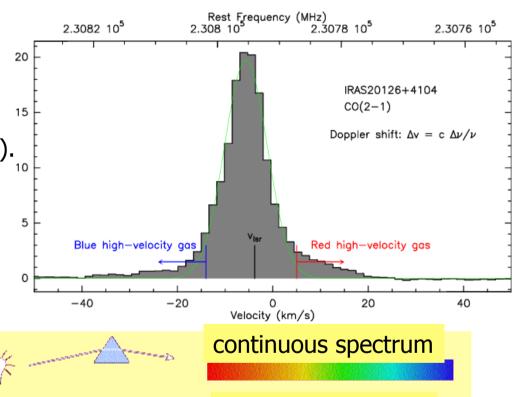
MIDI VLTI

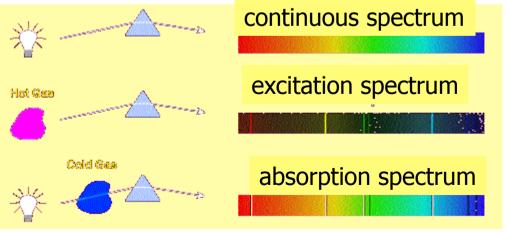
Interfero
-metrie
mit
2 VLTs

Overview of the VLT Interferometer

Breitbandbeobachtungen und Spektroskopie II


- Strahlung wird aufgespalten durch Prisma, Gitter oder Schlitz


- Spektrale Aufloesung


$$A = \frac{\lambda}{\Delta \lambda}$$

- im Optischen und Nahinfraroten ueblicherweise zwischen 100 und ein paar 1000 (max. 10⁵).
- im Radiobereich viel hoeher
- Geschwindigkeitsaufloesung:

$$\Delta V = C * \Delta \lambda / \lambda = C * \Delta v / v$$

Radioastronomie

- Ueberdeckt einen grossen Wellenlaengenbereich. Historisch cm Wellen, aber sowohl m-Wellen als auch submm-Wellenlaengen werden heute zu der Radioastronomie gezaehlt.

- Typische Prozesse:
 - Ionisiertes Gas bei cm-Wellenlaengen durch Frei-Frei Emission.
 - Synchrotron Emission bei cm-Wellenl.
 - Kalter Staub bei (sub)mm-Wellenlaengen
 - Sehr viele molekulare Linien ueber den ganzen Spektralbereich (hohe spektrale Aufloesung).
 - Atomarer Wasserstoff
- Wegen λ/D werden grosse Teleskope benoetigt. In der Radioastronomie ueblicherweise durch Interferometer realisiert.

Themen heute

- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Strahlung/ Sternklassifikation

4.2. Strahlungsprozesse

Thermisches Gleichgewicht:

Kirchhoff-Planck-Gesetz:

Intensität als Funktion der Frequenz \mathbf{v} :

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{exp(h\nu/k_BT) - 1} \quad \text{in [erg/(Hz s cm^2 sr)]}$$

Intensität als Funktion der Wellenlänge λ:

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda k_B T) - 1} \quad \text{in [erg/(s cm^3 sr)]}$$

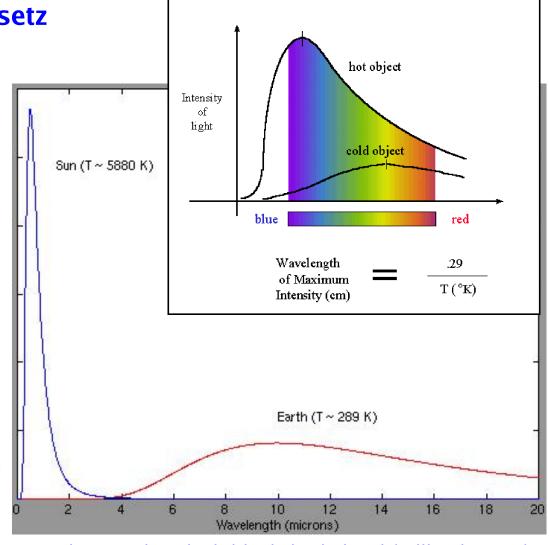
Beachte bei Umrechnung: $\lambda v = c$, also $d\lambda / dv = -\lambda^2 / c$

$$B_{\lambda} \neq B_{\nu}$$
, $B_{\lambda} d\lambda = B_{\nu} d\nu$

4.2. Strahlungsprozesse

Thermisches Gleichgewicht:

Wien'sches Verschiebungsgesetz


-> Maximum von B_{ν} : $v_{max} = 6 \times 10^4 T [K] MHz$

-> Max. von B_{λ} : $\lambda_{max} = 0.29 \, cm/T[K]$

-> Beispiele:

- Erde: im FIR

- Sonne: im Optischen (grün)

Wien's Law

http://marine.rutgers.edu/mrs/class/josh/black_body.html (still existent?)

"Helligkeit" eines Sterns

Historisch: Einteilung der Sterne in

Magnituden = "Größen"klassen = Helligkeitsklassen

-> Hipparchus (190-120 v. Chr.):

Einteilung aller sichtbaren Sterne in 6 Größenklassen / Magnituden

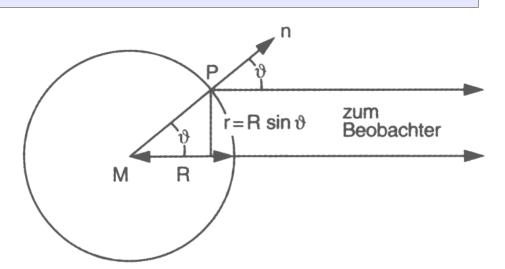
- -> 1. Magnitude (m = 1) = hellste Sterne
- -> 6. Magnitude (m = 6) = Limit der Sichtbarkeit
- -> Pogson (1856): Numerische Skala:
 - \rightarrow m = 1 Stern ist 100x heller als m = 6 Stern
 - \rightarrow m = 1 Stern ist 2.512 x heller als m = 2 Stern
 - -> m = 0 ist 2.512 x heller als m = 1
 - -> m = -1 ist 2.512 x heller als m = 0

Strahlungstrom eines Sterns:

Mittlerer Strahlungsstrom von einem Punkt auf der
Sternoberfläche in alle Richtungen entspricht
Mittelwert des Strahlungsstroms von allen Punkten der
Sternoberfläche in eine Richtung (also zum Beobachter)

Intensität I_v wichtig bei aufgelöster Sternoberfläche (Sonne)

Strahlungsstrom F, wichtig, wenn nur Gesamtfluß beobachtet wird


-> Leuchtkraft eines Sterns:

$$L \equiv 4 \pi R^2 F$$

Dimension: Energie/Zeit

Sonne: $L_0 = 3.82 \times 10^{33} \text{ erg/s}$

Überriesen: $L = 10^6 L_O$

Helligkeit & Strahlungsfluß::

- -> Meßwert hängt vom Detektor ab, "Empfindlichkeitsfunktion" E
- -> Monochromatischer Strahlungsfluß des Sterns bei Abstand d:

$$f_{\lambda} = \frac{R^2}{d^2} F_{\lambda}$$

 $f_{\lambda} = \frac{R^2}{d^2} F_{\lambda}$ -> gemessener Gesamtstrahlungsfluß: $S = \int_0^{\infty} f_{\lambda} E_{\lambda} d\lambda$

$$S = \int_0^\infty f_{\lambda} E_{\lambda} d\lambda$$

- -> beobachtete Strahlungsflüsse von $S_1 / S_2 \sim 10^{10}$
 - -> Helligkeit definiert als Logarithmus des Strahlungsfluß
 - -> logarithmische Helligkeitsskala m = 2.5 log(S) + const

Einheit [m] : mag (Magnitude) ;

Helligkeitsunterschiede:

$$m_1-m_2 = -2.5 \log (S_1/S_2)$$

Absolute Helligkeit eines Sterns:

- -> absolute Magnitude M bei Norm-Entfernung von 10pc
- -> Entfernungsmodul:

$$m-M = 5 log\left(\frac{d[pc]}{10}\right) = -2.5 log\left(\frac{10pc}{d}\right)^2$$

-> Absolute Helligkeiten: Sonne: $M_{vis} \sim M_{bol} = 4.75$

Sirius (2.64 pc) : m = -1.46, M = 1.43;

Rigel (240 pc): m = 0.12, M = -6.78

Bolometrische Magnitude:

Spiegelt die Gesamtleuchtkraft eines Sterne wieder
 (über alle Frequenzen): -> bolometrische Magitude: m_{bol}

Farbe, Farbindex F.I.: $(U-B)=m_U-m_B$, $(B-V)=m_B-m_V$, ...

Leuchtkraft des Sterns (Definition):

$$L=4\pi R^2 F$$

-> *F* ist ausgestrahlte Energie pro Fläche Für Schwarzkörper: Stefan-Boltzmann-Gesetz:

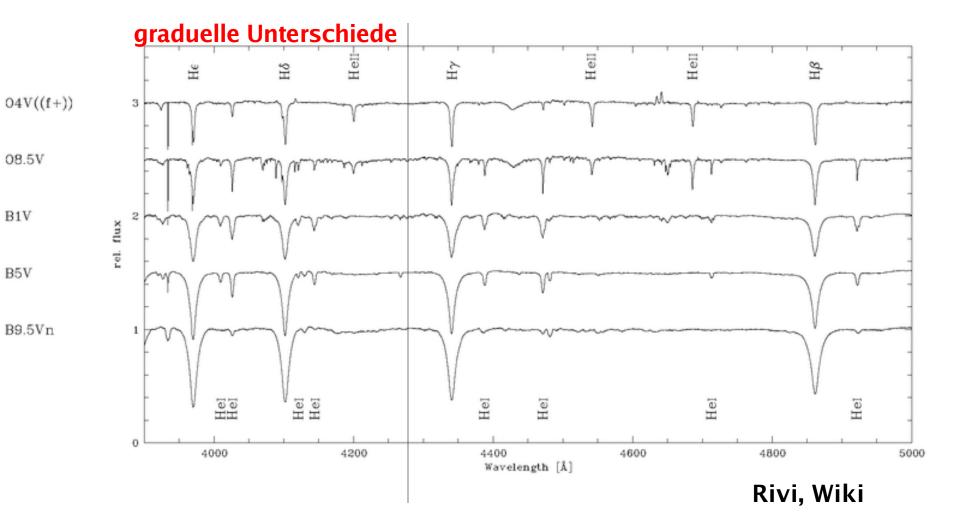
$$F = \sigma_{SB} T^4$$
 $\sigma_{SB} = 5.67 \times 10^{-5} \, erg \, cm^{-2} \, s^{-1} \, K^{-4}$

Aber: Sterne sind keine schwarzen Körper!!

-> Definition einer

"Effektivtemperatur":

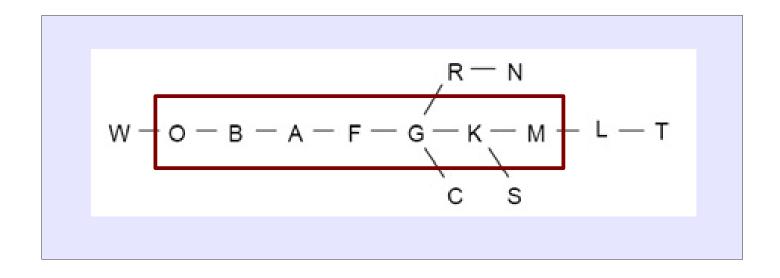
$$T_{eff} = \left(\frac{L}{\sigma_{SB} 4 \pi R^2}\right)^{1/4}$$


Effektivtemperatur keine echte Temperatur, sondern quantifiziert Energieausstrahlung / Fläche

Dennoch: T_{eff} ist <u>typische</u> Temperatur der Sternatmosphäre

-> T_{eff} ist der <u>wichtigste Sternparameter</u>, der aus der Analyse des Sternlichts gewonnen werden kann ...

Sterne haben verschiedene Temperatur / Effektivtemperatur


-> verschiedene spektrale Verteilungen, Linien, und Linienprofile

Spektral-Klassifikation

-> Harvard-Klassifikation von Sternspektren:

ein-dimensionale Sequenz von Spektren, korreliert mit Sternfarbe, Farb-Index, also Temperatur

Spektral-Klassifikation

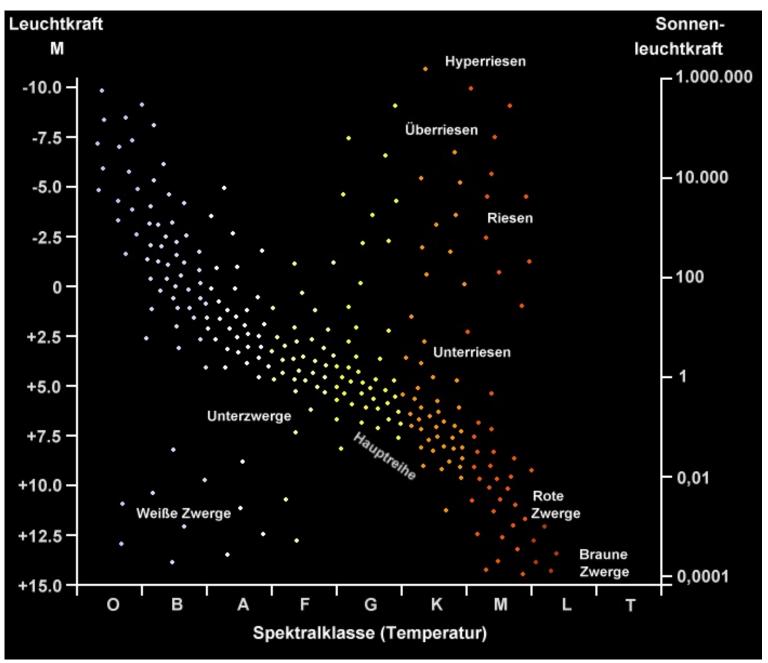
-> Spektraltyp SpT, absolute visuelle Magnitude, Farbindex, Effektiv-Temperatur, Farb-Temperatur, Bolometrische Korrektur, bolometrische Magnitude typischer Sterne

SpT	Mv	B-V	U-B	T_{eff}	Тc	B.C.	M _{Bol}
O5 B0 B5 A0 A5 F0 G5 K0 K5 M0	-6 -3.7 -0.9 +0.7 +2.8 +3.8 +4.6 +5.2 +6.0 +7.4 +8.9	+0.45 +0.57 +0.70 +0.84 +1.11 +1.39	-1.2 -1.07 -0.56 0.00 +0.09 +0.02 -0.01 +0.04 +0.20 +0.46 +1.06 +1.24 +1.19	35 000 21 000 13 500 9 700 8 100 7 200 6 500 6 000 5 400 4 700 4 000 3 300 2 600	70 000 38 000 23 000 15 400 11 100 9 000 7 600 6 700 6 000 5 400 4 500 3 800 3 000	4.6 3.0 1.6 0.68 0.30 0.10 0.03 0.10 0.20 0.58 1.20	-10.6 -6.7 -2.5 0.0 +1.7 +2.7 +3.8 +4.6 +5.1 +5.8 +6.8 +7.6 +9.8

(Aus: Scheffler/Elsässer Physik der Sterne und der Sonne)

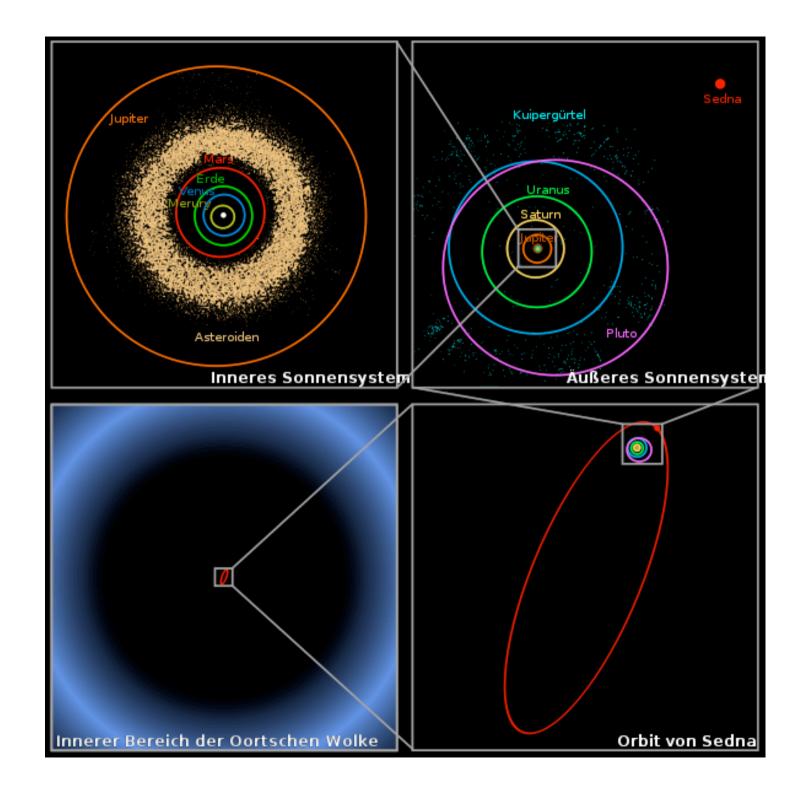
Leuchtkraftklasse:

Sterne gleicher Spektralklasse (Sp) können verschiedene Leuchtkraft haben

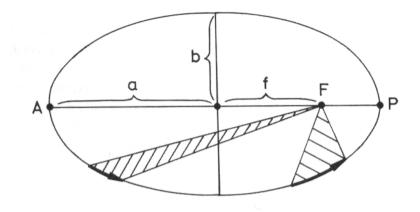

- -> Leuchtkraftklasse (LC)
- -> MK-Klassifikation (Morgan & Keenan)
- -> Grund: Radius der Sterne:

$$L=4\pi R^2 F$$

$$F = \sigma_{SR} T^4$$

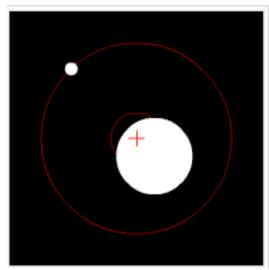

Klassen: I = Überriesen, II = helle Riesen, III = Riesen, IV = Unterriesen, V = Zwergsterne, VI = Unterzwerge

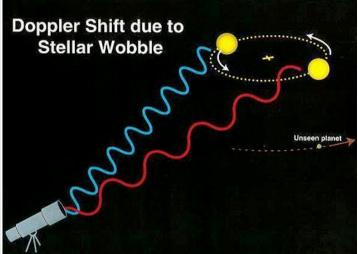
6.3. Hertzsprung-Russell-Diagramm

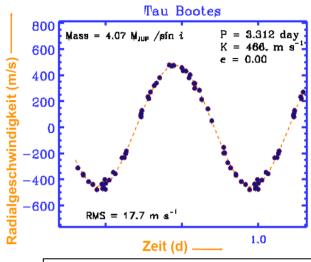


- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Keplergesetze




- 1.) Die Koerper bewegen sich relativ zur Sonne in Ellipsen, in deren einem Brennpunkt die Sonne steht.
- 2.) Der von der Sonne zum umlaufenden Himmelskoeper gezogene Radiusvektor ueberstreicht in gleichen Zeiten gleiche Flaechen.


 → Konstanz des Bahndrehimpulses
- 3.) Das Quadrat der Umlaufzeit U waechst proportional zur dritten Potenz der grossen Halbachse a und umgekehrt proportional zur Massensumme:

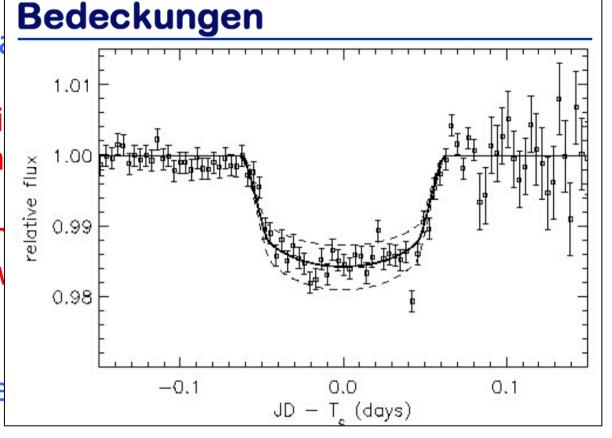
$$U^2 = 4π^2a^3/(G(m_1+m_2))$$

Da $m_2 << m_1$ → U^2 proportional zu a^3

Radialgeschwindigkeitsmethode

Schwerpunktsatz: $M_p a_p = M_s a_s \rightarrow M_p = M_s a_s/a_p$ Kepler 3: $a_p^3 = G (M_s + M_p) U^2/(4\pi^2) \sim G M_s U^2/(4\pi^2)$ (M_s, M_p, a_s, a_p: Massen und Halbachsen von Stern & Planet U: Umlaufzeit)

Stern ungefaehr auf Kreisbahn: $v_s U = 2\pi a_s \rightarrow a_s = v_s U/(2\pi)$


→
$$M_p = v_s * (M_s^2 U/(2\pi G))^{(1/3)}$$
 oder $M_p = v_s \sqrt{(M_s a_p/G)}$

Einschraenkung:

- Ueblicherweise Inklinationswinkel \rightarrow nur unteres Limit M_p(sin i)
- Oftmals keine Kreis- sondern Ellipsenbahnen → Exzentrizitaet

Detektionstechniken

- Pulsarplaneten
 - erste extrasola
- Radialgeschwindi
 - bisher effizien
- Direktes Abbilder
 - technisch sch
- Astrometrie
 - Positionsverae

- Bedeckungen/Transits
 - Abschwaechung des Sternlichts beim Vorruebergang eines Planeten
 Vergleiche auch Venustransit
- Microlensing

Habitable Zone

Einfache Abschaetzung fuer T von fluessigem Wasser:

$$T = \sqrt[4]{\frac{(1-A)L_{\rm sun}}{16\pi\sigma d^2}}$$

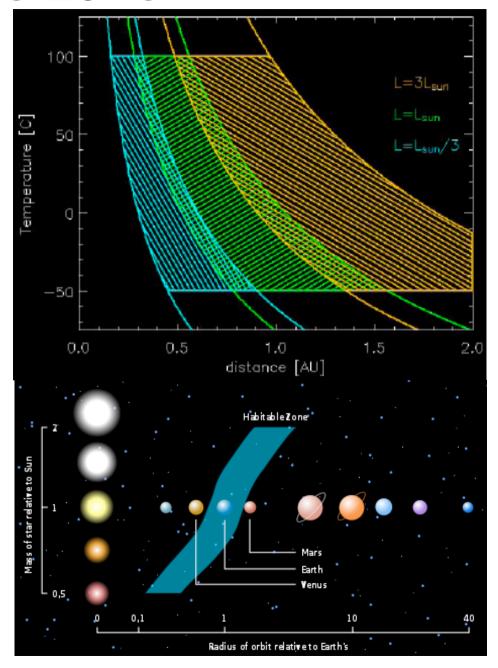
T: Temperatur Planet

σ: Stefan-Boltzmann-Konstante

L_{sun}: Leuchtkraft des Sterns

d. Abstand Stern-Planet

A: Albedo/Reflektivitaet

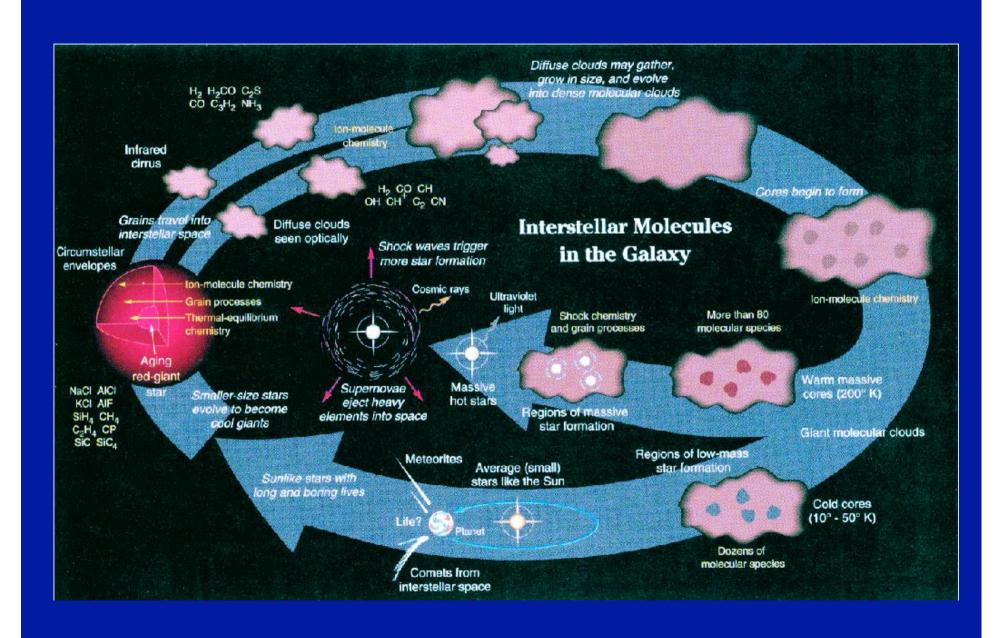

Ozeane: 7-9% Wald: 12% Sand: 30%

Schnee: 60%

Wolken: 30-90%

Mittelwert: 30%

In Realitaet komplizierter da auch Atmosphaere mit beruecksichtigt werden muss.


- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Ueberblick ueber die Komponenten

Phase	n [cm ⁻³]	T [K]	f	M [10 ⁹ M _☉]
Hot ionised medium	0.003	10 ⁶	0.5	0.1
Warm ionised medium	0.3	8000	0.1	1.0
Warm neutral medium (HI)	0.5	8000	0.4	1.4
Cold neutral medium (HI clouds)) 50	80		2.5
Molecular clouds	>300	10		2.5
HII regions	1 - 10 ⁵	104		0.05

f als Volumenfuellfaktor der Galaktischen Scheibe

Der kosmische Zyklus

Molekuele im All

2	3	4	5	6	7	8	9	10	11	12	13	atoms
H2 AIF AICI C2 CH CH+ CN C0 C9 CSi HCI NH NO NS NaCI OH PN S0 SiS SiS SiS SiS FeO(?	C3 C2H C2O C2S CH2 HCN HCO+ HCO+ HCS+ HOC+ H2O H2S HNC HNO MgCN MgNC N2H+ N2O NaCN OCS SO2 c-SiC2 CO2 NH2 H3+ SiCN AINC) SiNC	c-C3H I-C3H C3N C3O C3S C2H2 CH2D+? HCCN HCNH+ HNCO HNCS HOCO+ H2CN H2CN H2CS H3O+ NH3 SiC3 C4	HC3N HC2NC HCOOH H2CHN H2C2O H2NCN HNC3 SiH4 H2COH+	HC2CHO NH2CHC C5N HC4N Jm di	e 180 (<u>de</u>). 55		CH3C5N? (CH3)2CO NH2CH2COOH? CH3CH2CHO stellare Mative) Mole				

Interessante Webseiten:

<u>http://physics.nist.gov/cgi-bin/micro/table5/start.pl</u> → Im ISM beobachtet
<u>http://www.cdms.de</u> → Labordaten

Staub im Materiekreislauf

Staub wird groesstenteils in den Endtstadien der Sterne produziert: Huellen von roten Riesen, planetare Nebel, Supernovae. Staub kann aber auch direkt im ISM entstehen Staubzusammensetzung:
Graphite C
Silicon carbide SiC
Enstatite (Fe,Mg)SiO₃
Olivine (Fe,Mg)₂SiO₄
Iron Fe
Magnetite Fe₃O₄

Groessenverteilung: Zwischen 0.005 und 1μ m n(a) ~ $a^{-3.5}$ (a: size) (Mathis, Rumpl, Nordsieck 1977)

Gas-StaubMassenverhaeltnis:
Kanonisch 1:100
Neuere Arbeiten
1:150 (Draine et al. 2009)

Jeans-Analyse

Die Jeans-Längen λ_J und Jeans-Massen M_J , oberhalb derer Molekülwolken gravitativ instabil werden und kollabieren, sind:

$$\lambda_{\rm J} = ({\rm \Pia_t^2/(G\rho_0)^{1/2}} = 0.19 {\rm pc} \ ({\rm T/(10K)})^{1/2} \ ({\rm n_{H2}/(10^4 cm^{-3})^{-1/2}})^{-1/2}$$

a_t: Schallgeschw.

$$M_J = a_t^3/(\rho_0^{1/2}G^{3/2}) = 1.0M_{sun} (T/(10K))^{3/2} (n_{H2}/(10^4 cm^{-3})^{-1/2})$$

→ Werte darueber lassen die Wolken kollabieren. Im Umkehrschluss koennen sehr kleine und massearme Wolken leichter stabil bleiben.

Beispiel: Eine grosse Moelkuelwolke mit T=10K und $n_{H2}=10^3 \text{cm}^{-3}$ $\rightarrow M_J = 3.2 \text{ M}_{\text{sun}}$ Um Groessenordnungen zu niedrig.

→ Andere Stabilisierungsquellen notwendig, z.B. Magnetfelder oder Turbulenz

Virialanalyse

Kraeftegleichgewicht einer Struktur im hydrostatischen Gleichgewicht:

Unter Einbeziehung eines Magnetfeldes **B**, eines Stromes **j** und einer Flussgeschwindigkeit **v**, laesst sich die Bewegungsgleichung schreiben:

$$\rho \, \mathsf{D} \mathbf{v}/\mathsf{D} t = -\mathsf{grad}(\mathsf{P}) - \rho \, \mathsf{grad}(\Phi_{\mathsf{g}}) + 1/c \, \mathbf{j} \times \mathbf{B}$$

$$\mathsf{D} \mathbf{v}/\mathsf{D} t = (\partial \mathbf{v}/\partial t)_{\mathsf{x}} + (\mathbf{v} \, \mathsf{grad}) \mathbf{v}$$

$$\uparrow \qquad \qquad \uparrow$$

$$1/2(\partial^2 I/\partial t^2) \quad -2\mathsf{T} \qquad 2\mathsf{U} \qquad \mathsf{W} \qquad \qquad \mathsf{M}$$

 $(D\mathbf{v}/D\mathbf{t})_{x}$ beinhaltet die Veraenderung an einer raeumlichen Position $(\partial \mathbf{v}/\partial t)_{x}$ und die Aenderung, die durch den Transport von Teilchen an neue Orte mit unterschiedlicher Geschwindigkeit bewirkt werden.)

Unter der Annahme von Massenerhaltung und Ausnutzung der Poisson-Gleichung, ergibt sich nach mehrfacher Integration das Virialtheorem.

$$1/2 (\delta^2 I/\delta t^2) = 2T + 2U + W + M$$

*I: Traegheitsmoment, verringert sich wenn Kern kollabiert (m*r²)*

T: Kinetische Energie U: Thermische Energie W: Gravitationsenergie M: Magnetische Energie Alle Terme ausser W sind positiv. Um die Wolke stabil zu halten muessen andere Kraefte W ausgleichen.

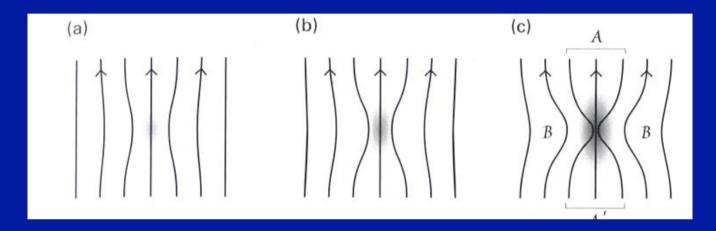
Anwendungen des Virialtheorems I

Wenn alle Kraefte zu schwach sind um W auszugleichen $1/2 (\delta^2 I/\delta t^2) = W \sim Gm^2/r$

Daraus laesst sich eine Freifallzeit ableiten: $t_{\rm ff} \sim (G\rho)^{-1/2}$

Oder exakter fuer eine druckfreie 3D homogene Kugel $t_{\rm ff} = (3\pi/32 {\rm Gp})^{1/2}$

Fuer eine grosse Molekuelwolke erhaelt man: $t_{\rm ff} \sim 7*10^6 \, \text{yr} \, (\text{m}/10^5 \text{M}_{\rm sun})^{-1/2} \, (\text{R}/25 \text{pc})^{3/2}$

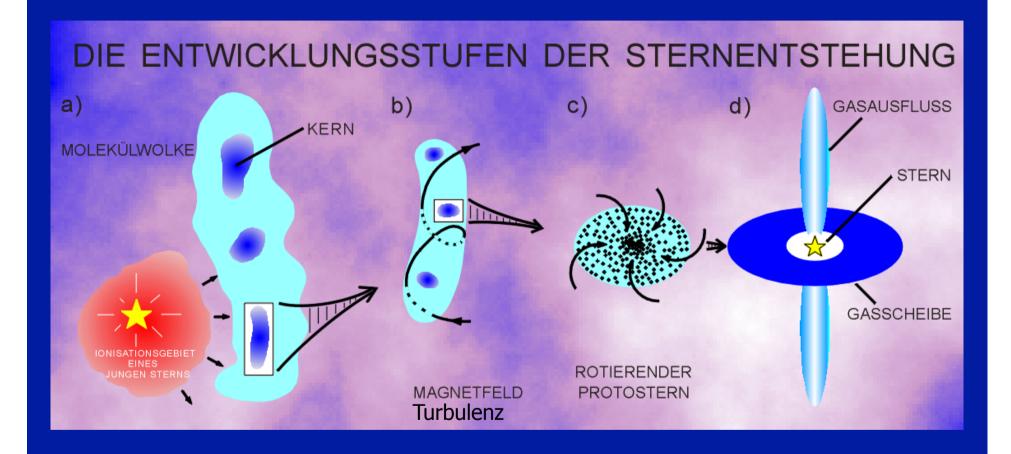

(R: Radius m: Masse)

Fuer einen dichten Kern mit $\rho \sim 10^5 \text{cm}^{-3}$ ist $t_{\rm ff}$ ungefaehr 10^5 yr.

Aber global kollabierende Wolken nicht beobachtet → Andere Kraefte

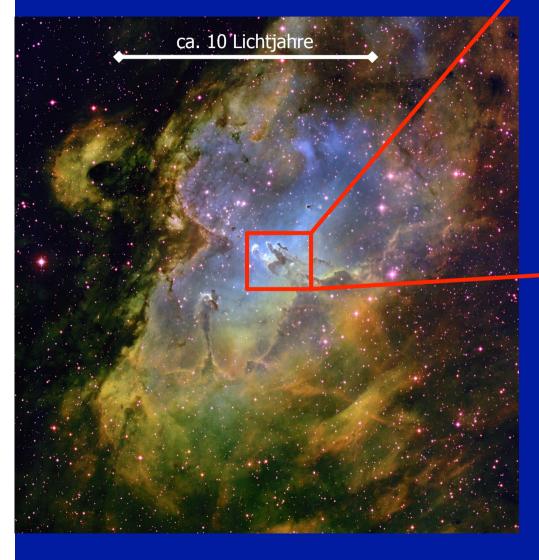
Ambipolare Diffusion

- Magnetfelder koppeln an das ionisierte Gas, dieses wiederum durch Stoesse an das neutrale Gas.


→ Neutrales und ionisiertes Gas koennen teilweise entkoppeln, so dass neutrales Gas durch Magnetfeld hindurchdiffundieren und leichter kollabieren kann.

(L: Laenge)

Ambipolare Zeitskala: $t_{ad} \approx 3x10^6 \text{yr} (n_{H2}/10^4 \text{cm}^{-3})^{3/2} (B/30 \mu G)^{-2} (L/0.1 \text{pc})^2$


Diese Zeitskala erscheint sehr lang, und es ist immer noch Thema der aktuellen Forschung, ob ambipolare Diffusion wichtig fuer Stabilitaet ist, oder ob nicht doch Turbulenz dominiert.

Sternentstehungsparadigma

Zeitskalen: Hauptakkretionsphase ca. 500 000 Jahre Vorhauptreihenentwicklung ca. einige Mio Jahre

Molekülwolkenskalen

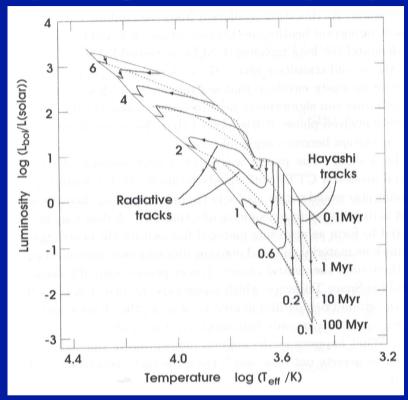
Sternentstehungseffizienz nur ein paar Prozent

Protostern & Vorhauptreihenstern

<u>Def. Protostern:</u> Ein Objekt, dass den Grossteil seiner Leuchtkraft aus dem Akkretionsschock gewinnt (Phasen 2 und 3).

<u>Def. Vorhauptreihenstern:</u> Anschliessende Phase, in der das zentrale Objekt seine Leuchtkraft groesstenteils aus gravitativer Kontraktion produziert.

Quasi-hydrostatische Phase:


- Dynamische Phase beendet → quasi-statische Kelvin-Helmholtz-Kontraktion:

Virialtheorem: $2T = -W = GM^2/R \rightarrow wird in Leuchtkraft umgewandelt$

$$\rightarrow$$
 t_{KH} = W/L = (GM²/R)/L = 3x10⁷yr (M/1M_{Sonne})² (R/1R_{Sonne})⁻¹ (L/1L_{Sonne})⁻¹

- → Endet wenn Zentraltemperatur zum H-Brennen erreicht ist (~10⁷K)
- → Stern ist geboren!

Hertzsprung Russell (HR) Diagramm

- Die "Birthline" wurde zuerst aus der Beobachtung als der Ort identifiziert, an dem Sterne das erste Mal im HR Diagramm sichtbar werden.
- Theoretisch kann man die "Birthline" definieren als den Zeitpunkt, an dem die Hauptakretionsphase beendet ist, und die Leuchtkraft aus Kontraktion gewonnen wird → Start der Vorhauptreihenentwicklung

Scheiben und Jets

Themen heute

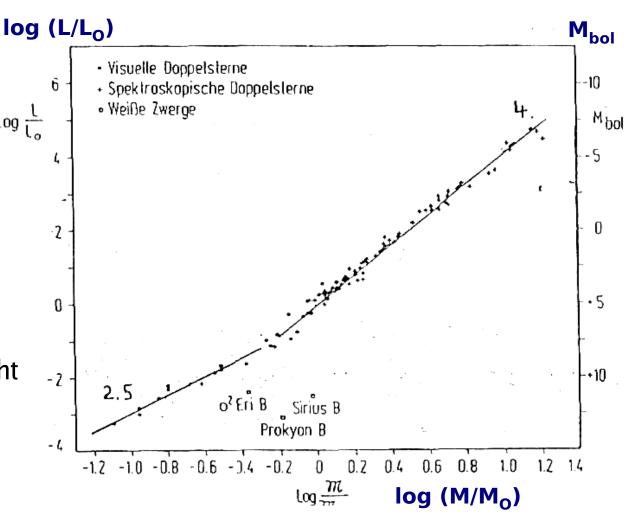
- Sternpositionen und Himmelskoordinaten
- Teleskope, Aufloesung und Wellenlaengen
- Strahlung, Sternklassifikation
- Sonnensystem, Keplergesetze und Exoplaneten
- ISM und Sternentstehung
- Sternentwicklung

Sternentwicklung

9.1. Weitere Sternparameter

Empirische Masse-Leuchtkraft-Beziehung

Beobachtungsdaten (1980):


Beste Massenbestimmungen aus 26 visuellen

Doppelsternen,

93 Bedeckungsveränderlichen,

4 spektroskopischen Doppelsternen

"Weiße Zwerge"
weichen ab, liegen nicht
auf der Hauptreihe

9.1. Weitere Sternparameter

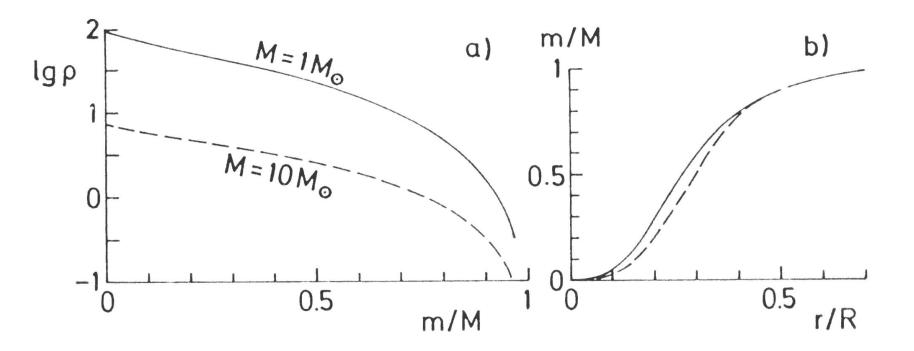
Empirische Masse-Leuchtkraft-Beziehung

In erster Näherung:

 $L \propto M^3$

Bessere Approximation:

$$L \propto M^{2.5}$$
 $M < 1/2 M_O$

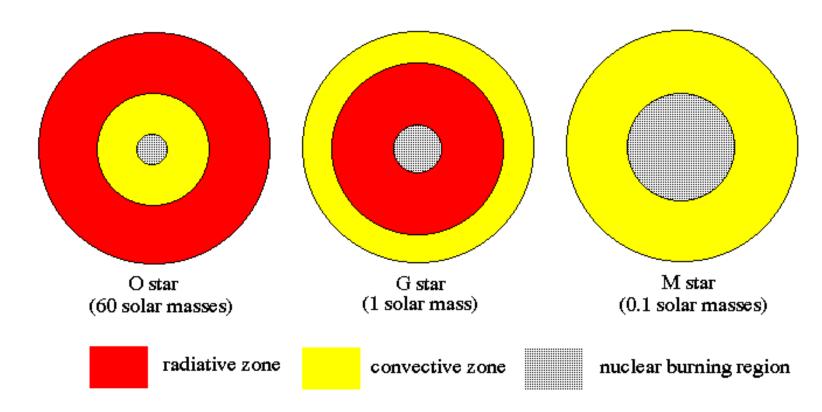

$$L \propto M^{3.8} \qquad [M > 1/2 M_O]$$

- -> Diese Beziehungen sind durch die Physik der Sternaufbaus und der Sternentwicklung bestimmt (kommt später...)
- -> Massereichere Sterne "leben" kürzer: $L \sim M^4$, $\tau \sim M/L \sim M^{-3}$
- -> Fundamentale Beziehung zum Verständnis der leuchtenden Materie im Universum

10.3 Sternentwicklung - Hauptreihe

Sternaufbau, Sternentwicklung:

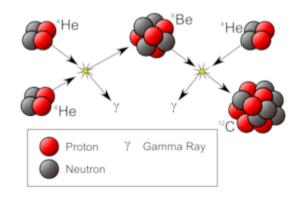
-> Quasistationärer Gleichgewichtszustand als Resultat numerischer Lösungen der Sternaufbaugleichungen:


Z.B.: -> Massereiche Sterne haben kleinere Zentraldichten

9.4. Energietransport

Sternaufbau verschiedener Sternklassen (Hauptreihe)

-> Unterschiedliche Lage der radiative / konvektive Zonen: "obere" Hauptreihe: radiative Hülle, konvektiver Kern "untere" Hauptreihe: konvektive Hülle, radiativer Kern


Internal Structure for Main Sequence Stars

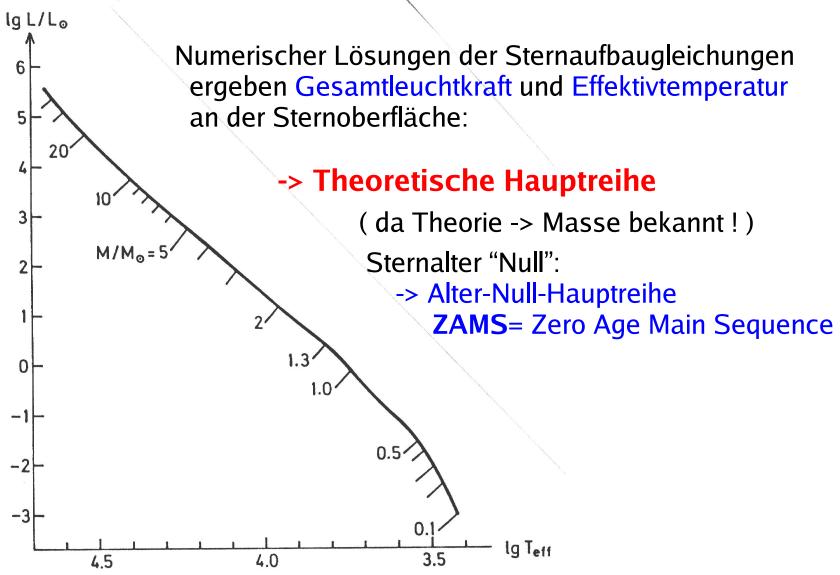
10.2 Stellare Energieerzeugung

Stellare Energie-Erzeugung:

Kernfusion:

-> thermische Energie & Gravitationsenergie können die langen "Lebens" zeiten der Sterne nicht erklären

Kernfusion: "Brennen" von nieder- zu höherzahligen Elementen:

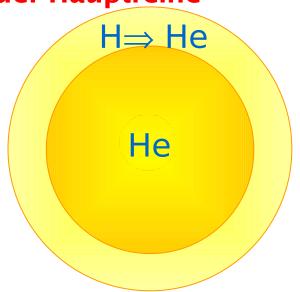

- -> Energiegewinn aus Bindungsenergie:
- -> verschiedene Fusionsprozesse & Zeitskalen
- -> Langfristige Änderung des "Rohstoff"- und Energiehaushalts

-> "Sternentwicklung":

- 1) quasi-stationäres Gleichgewicht für Sterne der Hauptreihe
- 2) Entwicklung auf kurzen Zeitskalen außerhalb der Hauptreihe
- -> Eine Haupterkenntnis der Astrophysik des 20. Jhrts

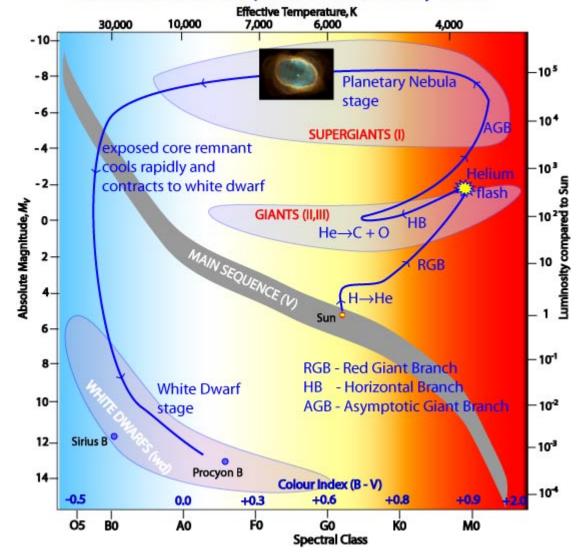
10.3 Sternentwicklung - Hauptreihe

Sternentwicklung: Alter-Null-Hauptreihe (ZAMS)


Sternentwicklung: Altersentwicklung ab der Hauptreihe

Blick in den Kernbereich:

- -> ZAMS-Zusammensetzung: 70% H, 27% He
- -> Nach 5 Mrd Jahren H-Brennen: 65% He, 35% H


-> Ende des Hauptreihenstadiums:

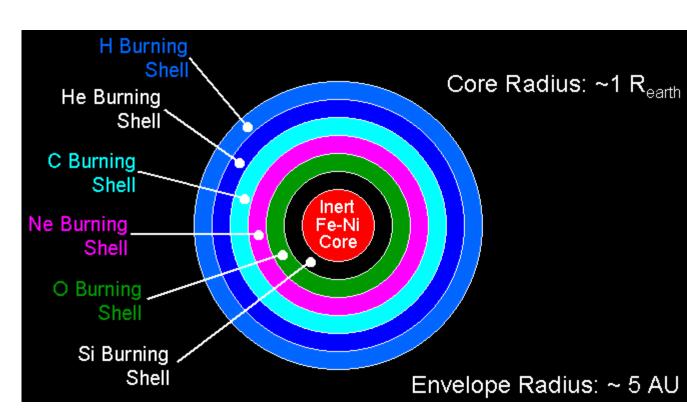
- Heißer Kern, reich an Helium
- Energieproduktion durch Schalenbrennen von H
- Strahlungsdruck des heißen Kerns
 - -> Expansion der äußeren Hüllen (> Erdbahn), Roter Riese
- Kern wird weiter gravitativ komprimiert -> heißer, dichter
 - -> Kernmaterie "entartet": Änderung der Zustandsgleichung
- -> Bei 100 Mio K -> He-Brennen im Kern

Entwicklung eines Sterns von 1 M_O im HRD

The end ...

(massearme Sterne)

- -> Sternwinde, Blitze des HeliumSchalen-Brennens und thermische Energie blasen äußere Schalen weg
- -> Starke Massenverlust
- -> Sternhülle wird zum Planetarischen Nebel
- -> Heißer Kern ionisiert das Material, regt es zum Leuchten an
- -> Kern entwicklet sich zum Weißen Zwerg


Entwicklung massereicher Sterne > 8 M_o

- -> Zwiebelschalenstruktur bis zum Si-Brennen
- -> Eisenkern von 1.3-2.5 M_O
- -> Si-Brennen produziert verschiedene Elemente nahe des Eisen (Stabilitätsmaximum) -----> 567

Am Ende:

Kollaps des Zentralbereichs:

- -> freier Fall: 0.1s
- -> Supernova-Explosion, Typ II

The end ...

(massereiche Sterne)

- -> Starke Massenverluste
- -> Kollaps des Kerns
- -> Stern wird zerissen: Supernova-Explosion
- -> Durch Kollaps und Explosion starke Neutronenflüsse Aufbau schwerer Kerne > Eisen: s, r Prozesse
- -> Je nach Masse entwickelt sich Kern zum Neutronenstern oder Schwarzen Loch

Krebsnebel

Einfuehrung in die Astron. & Astrophysik I

Wintersemester 2013/2014: Henrik Beuther & Christian Fendt

```
17.10 Einfuehrung: Ueberblick und Geschichte (H.B.)
24.10 Koordinatensys., Sternpositionen, Erde/Mond (C.F.)
31.10 Teleskope und Instrumentierung (H.B.)
07.11 Strahlung, Strahlungstransport (C.F.)
14.11 Planetensystem(e) und Keplergesetze (H.B.)
21.11 Sonne & Sterne, Typen, Klassifikationen, HR-Diagramm (C.F.)
28.11 Interstellare Materie: Chemie und Materiekreislauf (H.B.)
05.12 Sternentstehung, Akkretionsscheiben und Jets (H.B.)
12.12 Sternaufbau und Sternentwicklung: Hauptreihe (C.F.)
19.12 Sternaufbau und Sternentwicklung: Endstadien (C.F.)
26.12 und 02.01 -
09.01 Mehrfachsysteme und Sternhaufen, Dynamik (C.F.)
16.01 Exoplaneten und Astrobiologie (H.B.)
23.01 Die Milchstrasse (H.B.)
30.01 Zusammenfassung (C.F. & H.B.)
```

08.02 Klausur, 15:00-17:00, Philosophenweg 12, alle 3 Hoersaele