
PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

An elective lecture course for the winter term 2012/13 at the Ruperto Carola University Heidelberg

12/11/2012

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

Tentative Schedule:

16.10. Introduction and overview (HL & HB)

23.10. Emission mechanisms, physics of radiation (HB)

30.10. Telescopes – single-dish (HL)

06.11. Telescopes – interferometers (HB)

13.11. Instruments – continuum detection (HL)

20.11. Instruments – line detection (HB)

27.11. Continuous radiation (free-free, synchrotron, dust) (HL)

04.12. Radiation transfer (HB)

11.12. Line radiation (HL)

18.12. Buffer ...

08.01. Molecules and chemistry (HL)

15.01. Physics and kinematics (HB)

22.01. Applications (HL) 29.01. Applications (HB)

05.02. Exam week

12/11/2012

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

Topics for today:

12/11/2012

- line radiative transfer and Einstein coefficients (basic)

The derivations on the blackboard followed closely the corresponding chapter in the Condon lecture series on radio atsronomy: http://www.cv.nrao.edu/course/astr534/LineRadxfer.html

Read your notes, read this chapter of the Condon lectures. And if you really want to understand it, follow and redo all the steps there with a pen and a piece of paper.

Radio Astronomy

- different kinds of line emission mechanisms

Optical spectroscopy: already well established in astrophysics at the dawn of radio astronomy

Fraunhofer (1821) and Kirchhoff (1859): absorption line system in the Sun spectrum, and spectral analysis of the Sun and the stars

12/11/2012

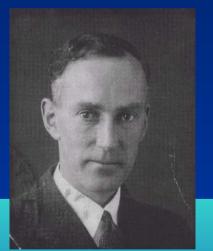
Optical spectroscopy: already well established in astrophysics at the dawn of radio astronomy

Material in-between the stars got accessible:

W. Huggins 1864: "Nebulium" lines towards emission nebulae (1927 reveal as to arise from oxygen ions, "forbidden lines")
 J. Hartmann 1904: the non-moving Calcium absorption line in the spectra of binary stars

Still, most studies concentrated on stellar spectroscopy, atomic and ion lines.

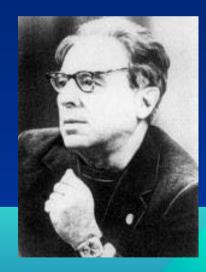
A. McKellar 1940: spectral evidence for CH and CN in optical spectra ... perhaps the first organic molecules ! But not a high impact in subsequent research.



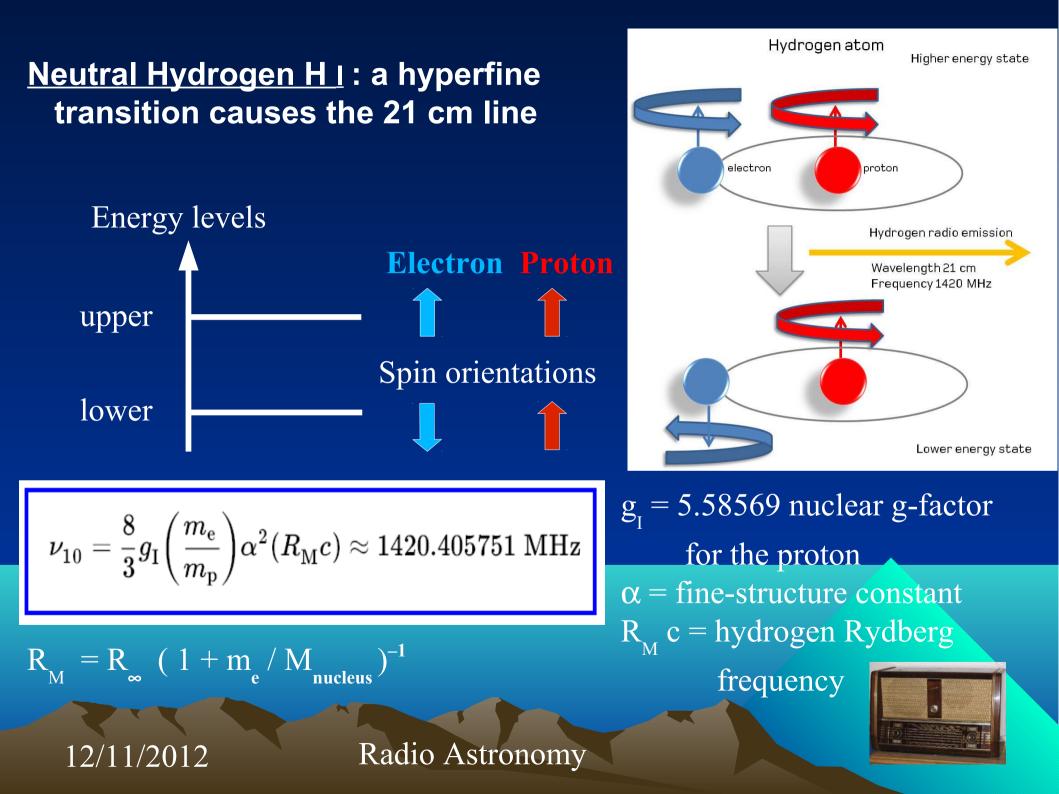
Radio astronomy: first results by the pioneers Jansky and Reber were obtained in the centimeter and meter <u>continuum</u>

But a few people got excited about the possibility to have spectral lines in the radio!

Access to kinematics in the (cold) interstellar medium (ISM) as an early motivation not directly accessible to optical spectroscopy


Prediction of line emission arising from neutral hydrogen in 1944 – 1949 ...

Jan Oort


Hendrik van der Hulst

losif Shklovsky

Fine-structure lines of metal atoms and ions

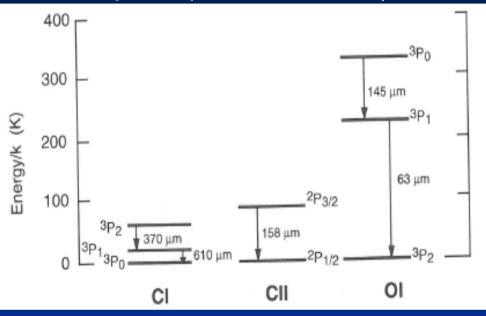
 \rightarrow energy levels split by fine-structure interaction between the total orbital momentum of the electrons **L** and their total spin **S**

J = L + S (if this so-called Russell-Saunders coupling applies)

Selection rules for electric dipole transitions are $\Delta S = 0$, $\Delta L = +/-1$, and $\Delta J = 0$, +/-1

It turns out that often, important fine-structure lines of astrophysical relevance violate one or the other relation ...

→ These have to be magnetic dipole transitions then, or even electric quadrupole transitions (much weaker than electric dipole ones)


Ion	Transition	λ	A _{ul}	Ω_{ul}	n _{crit}
	l-u	μm	s ⁻¹		cm^{-3}
Cı	${}^{3}P_{0} - {}^{3}P_{1}$	609.1354	7.93×10^{-8}	_	(500)
	${}^{3}P_{1} - {}^{3}P_{2}$	370.4151	2.65×10^{-7}	-	(3000)
Сп	$^{2}P_{1/2} - ^{2}P_{3/2}$	157.741	2.4×10^{-6}	1.80	47 (3000)
NII	${}^{3}P_{0} - {}^{3}P_{1}$	205.3	2.07×10^{-6}	0.41	41
	${}^{3}P_{1} - {}^{3}P_{2}$	121.889	7.46×10^{-6}	1.38	256
	${}^{3}P_{2} - {}^{1}D_{2}$	0.65834	2.73×10^{-3}	2.99	7700
	${}^{3}P_{1} - {}^{1}D_{2}$	0.65481	9.20×10^{-4}	2.99	7700
NIII	$^{2}P_{1/2} - ^{2}P_{3/2}$	57.317	4.8×10^{-5}	1.2	1880
Οı	${}^{3}P_{2} - {}^{3}P_{1}$	63.184	8.95×10^{-5}	-	$2.3 \times 10^4 (5 \times 10^5)$
	${}^{3}P_{1} - {}^{3}P_{0}$	145.525	1.7×10^{-5}	-	$3400 (1 \times 10^5)$
	${}^{3}P_{2} - {}^{1}D_{2}$	0.63003	6.3×10^{-3}	-	1.8×10^{6}
Оп	4S3/2-2D5/2	0.37288	3.6×10^{-5}	0.88	1160
	4S3/2-2D3/2	0.37260	1.8×10^{-4}	0.59	3890
Ош	${}^{3}P_{0} - {}^{3}P_{1}$	88.356	2.62×10^{-5}	0.39	461
	${}^{3}P_{1} - {}^{3}P_{2}$	51.815	9.76×10^{-5}	0.95	3250
	${}^{3}P_{2} - {}^{1}D_{2}$	0.50069	1.81×10^{-2}	2.50	6.4×10^{5}
	${}^{3}P_{1} - {}^{1}D_{2}$	0.49589	6.21×10^{-3}	2.50	6.4×10^{5}
	$^{1}D_{2}-^{1}S_{0}$	0.43632	1.70	0.40	2.4×10^{7}
Neп	${}^{2}P_{1/2} - {}^{2}P_{3/2}$	12.8136	8.6×10^{-3}	0.37	5.9×10^{5}
Nem	${}^{3}P_{2} - {}^{3}P_{1}$	15.5551	3.1×10^{-2}	0.60	1.27×10^{5}
	³ P ₁ - ³ P ₀	36.0135	5.2×10^{-3}	0.21	1.82×10^{4}
Sin	² P _{1/2} - ² P _{3/2}	34.8152	2.17×10^{-4}	7.7	(3.4×10^5)
SII	4S3/2-2D5/2	0.67164	2.60×10^{-4}	4.7	1240
	${}^{4}S_{3/2} - {}^{2}D_{3/2}$	0.67308	8.82×10^{-4}	3.1	3270
SIII	${}^{3}P_{0} - {}^{3}P_{1}$	33.4810	4.72×10^{-4}	4.0	1780
	${}^{3}P_{1} - {}^{3}P_{2}$	18.7130	2.07×10^{-3}	7.9	1.4×10^{4}
S iv	$^{2}P_{1/2} - ^{2}P_{3/2}$	10.5105	7.1×10^{-3}	8.5	5.0×10^{4}
ArII	$^{2}P_{1/2} - ^{2}P_{3/2}$	6.9853	5.3×10^{-2}	2.9	1.72×10^{6}
ArIII	${}^{3}P_{2} - {}^{3}P_{1}$	8.9914	3.08×10^{-2}	3.1	2.75×10^{5}
	${}^{3}P_{1} - {}^{3}P_{0}$	21.8293	5.17×10^{-3}	1.3	3.0×10^{4}
FeII	6D7/2-6D5/2	35.3491	1.57×10^{-3}	_	(3.3×10^{6})
	6D9/2-6D7/2	25.9882	$2.13 imes 10^{-3}$		(2.2×10^{6})

This sort of lines gives a kind of continuity wrt the optical and infrared wavelength range ...

It turns out that often, important fine-structure lines of astrophysical relevance violate one or the other relation ...

→ These have to be magnetic dipole transitions then, or even electric quadrupole transitions (much weaker than electric dipole ones)

These lines, especially the 158 µm CII line and the 63 µm OI line, are the most important "cooling" lines in the denser neutral and cooler ionised medium. → now accessible with heterodyne "radio" instrumentation (HIFI@Herschel and GREAT@SOFIA)

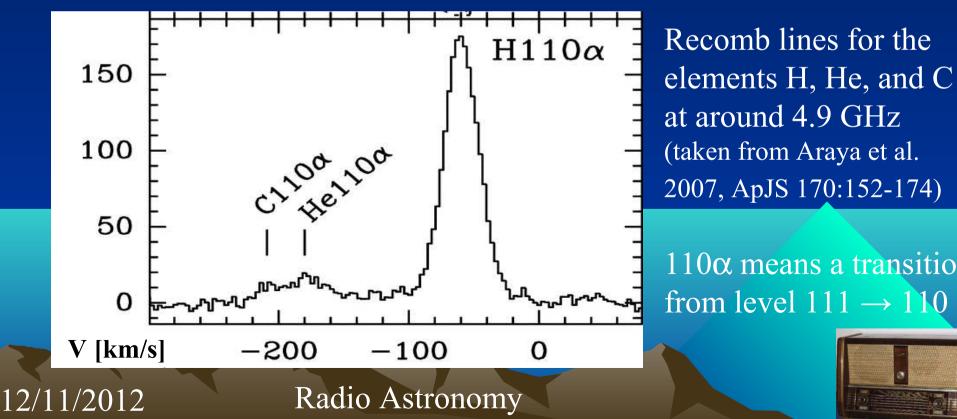
12/11/2012

Notation for the energy levels:

Fundamental state as $\rightarrow {}^{x}Y_{\downarrow}$

With X = 2S+1 , Y = S, P, D, ... for L = 0, 1, 2, ...

electric dipole transitions are $\triangle S = 0$, $\triangle L = +/-1$, and $\triangle J = 0$, +/-1


All shown transitions violate the $\Delta L = +/-1$ rule, i.e., they are much weaker magnetic dipole transitions.

Radio Recombination lines

Prerequisite: presence of ionised gas

- a.) Occasional recombination of free electrons with ions (i.e., a free-bound transition, giving a quasi-continuous spectrum, into high energy levels within the electron shell)
- b.) A subsequent level transition from one high to a slightly lower level, hence, a line radiation event.


2007, ApJS 170:152-174) 110α means a transition from level $111 \rightarrow 110$

Radio Recombination lines

1.) Recomb lines will always sit on a free-free continuum.

- 2.) Radio recomb lines arise from high energy levels (Rydberg states), and the atoms behave almost quasi-classical (a point charge in the middle with a single electron orbiting at a large distance ... → Correspondence Principle)
 Rydberg atoms in thin interstellar space can extent to almost macroscopic proportions (up to almost 1 mm!) not quickly destroyed by collisions
- 3.) radio recomb lines as a way to assess the kinematics of the ionised gas also in regions not accessible for optical spectroscopy due to (dust extinction)

2 atom H2 AIF AICI C2** CH CH+ CN CO CO+ CP SiC HCI KCI NH NO NS NaCI	C3* C2H C2O C2S CH2 HCN HCO	HNCS HOCO+ H2CO H2CN H2CS	HC2NC HCOOH H2CNH H2C2O H2NCN HNC3 SiH4*	6 atoms C5H I-H2C4 C2H4* CH3CN CH3NC CH3OH CH3SH HC3NH+ HC2CHO NH2CHO C5N I-HC4H* I-HC4N c-H2C3O H2CCNH(?) C5N–	7 atoms C6H CH2CHCN CH3C2H HC5N CH3CHO CH3NH2 c-C2H4O H2CCHOH C6H–	8 atoms CH3C3N HC(O)OCH3 CH3COOH C7H C6H2 CH2OHCHO I-HC6H* CH2CHCHO(?) CH2CCHCN H2NCH2CN	9 atoms CH3C4H CH3CH2CN (CH3)2O CH3CH2OH HC7N C8H CH3C(O)NH2) C8H– C3H6	10 atoms CH3C5N (CH3)2CO (CH2OH)2 CH3CH2CHO	11 atoms HC9N CH3C6H C2H5OCHO	12 atoms c-C6H6* C2H5OCH3? n-C3H7CN	>12 atoms HC11N C60* C70*
OH	N2O	CH3*	HC(O)CN			ח	atactad	molecul	Ag in gr		toide of
PN SO	NaCN OCS	C3N– PH3?	HNCNH CH3O			D	ciccica	morecu		Jace (ou	
SO+	SO2	HCNO	CIIJO			at	allonati	magnhar	$a_{\alpha} > 1$	70 (00 0	f 11/2012
SiN		HOCN				St	enal au	mospher	cs). – 📕	. / U (as u	of 11/2012)
SiO	CO2*	HSCN									
SiS	NH2	H2O2									
CS	H3+*	C3H+				T	- 1 C			α 1	D . (. 1
HF	H2D+						aken Ire	om the C	DMS (Cologne	e Database
HD FeO?	SiCN AlNC										
O2	SiNC					0	t Mol <u>ec</u>	ular Spe	ctrosco	py)	
CF+	НСР							_			1
SiH?	ССР					h	ttp://ww	w.astro.	uni-ko	eln.de/co	dms
РО	AlOH						L				
AlO	H2O+										
OH+ CN–	H2Cl+ KCN										
SH+	HO2										
SH	FeCN										
HCl+											

Line emission from molecules

Molecules can exhibit more degrees of freedom and more possibilities of quantised energy levels than simple atoms.

There can be energy transitions due to:

- electronic transitions

- vibrations of different kinds (bending, stretching of molecular bonds)
- molecular rotations
- inversion transitions

All will lead to line emission/absorption of one kind or the other.

To be continued in the next lecture ...

PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

Scripts at : http://www.mpia.de/homes/beuther/lecture_ws1213.html

Tentative Schedule: 16.10. Introduction and overview (HL & HB) 23.10. Emission mechanisms, physics of radiation (HB) **30.10.** Telescopes – single-dish (HL) 06.11. Telescopes – interferometers (HB) **13.11.** Instruments – continuum detection (HL) **20.11.** Instruments – line detection (HB) 27.11. Continuous radiation (free-free, synchrotron, dust) (HL) 04.12. Radiation transfer (HL) 11.12. Line radiation (HL) 18.12. Visiting the Effelsberg Telescope (all) 08.01. Molecules and chemistry (HL) 15.01. Physics and kinematics (HB) 22.01. Applications (HL) 29.01. Applications (HB) 05.02. Exam week

12/11/2012

Radio Astronomy PD Dr. Henrik Beuther and Dr. Hendrik Linz *MPIA Heidelberg*

18.12. Visiting the Effelsberg Telescope (all)

Have you indicated in the separate list whether you will come?

Meeting point and time for the day trip: 8:00 h (sharp) in front of ARI

In case something happens with your plan to participate: \rightarrow please send us an email in time

To: beuther @ mpia.de Cc: linz @ mpia.de

