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ABSTRACT

Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense
gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However,
a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of
the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse
emission can be, however, recovered from space-based, all-sky surveys with Planck.
Aims. Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present repro-
cessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey.
Methods. We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a fre-
quency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with
information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial
dynamic range. We visually describe the observed features and assess the global properties of dust distribution.
Results. Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar
medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column den-
sity contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated
structures extending over angular scales of 0.5◦, which we refer to as thin giant filaments. Corresponding to >30 pc structures in
projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas
by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2−5% for the dense gas fraction
(corresponding to Av > 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column
density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high
column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive
a contribution of this excess to the total column density of ∼2.2%, corresponding to NH2 = 2.92 × 1022 cm−2. Taking the total flux
density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ∼1 × 109 M�,
which is consistent with previous estimates using CO emission. From the mass and dense gas fraction ( fDG), we estimate a Galactic
SFR of Ṁ = 1.3 M� yr−1.
Conclusions. Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined
structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribu-
tion of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas
fraction despite its low star formation efficiency. Altogether our findings explain well the observed low star formation efficiency of
the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation
activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.
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1. Introduction

Large area surveys of the Galaxy in the (sub)millimeter regime
are essential to study the distribution of dust and star-forming
gas. While space-based missions, such as Herschel (André et al.
2010; Molinari et al. 2010; Motte et al. 2010) provide high sensi-
tivity images at submillimeter wavelengths with unprecedented
dynamic range, ground-based facilities have the advantage of

providing up to 3× better angular resolution at a similar fre-
quency. In this context, the APEX Telescope Large Area Survey
of the Galaxy (ATLASGAL survey; Schuller et al. 2009) pro-
vides one of the most extensive ground-based mapping of the
inner Galaxy at submillimeter wavelengths.

Ground-based bolometer arrays are, however, not well suited
to measure emission from angular scales larger than a fraction
of the field-of-view of the array. This is because variations of
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the atmosphere mimic emission from extended astronomical ob-
jects, and therefore this signal is removed when subtracting the
correlated noise from the maps in the data reduction process. As
a consequence, depending on the data acquisition method and
the reduction, the final emission maps have limited sensitivity
above certain angular scales. With the advent of sensitive space-
based missions, such as the all-sky survey of Planck (Tauber
et al. 2010), this missing information can now be retrieved.

In particular, the Planck/High Frequency Instrument (HFI;
Lamarre et al. 2010) surveyed the sky at 353 GHz, i.e. at a similar
frequency range as the APEX/Large APEX Bolometer Camera
(LABOCA) at 345 GHz used for the ATLASGAL survey. Here
we present newly processed maps of the ATLASGAL survey
that have been corrected for the loss of the filtered emission
based on the Planck data. We describe the method in Sect. 2,
then present and briefly describe the new data products in Sect. 3.
With this dataset, we investigate the large-scale properties of the
Galactic cold dust in Sect. 4.

2. Observations and data processing

2.1. APEX/LABOCA
The ATLASGAL survey imaged in total ∼420 sq. deg of the in-
ner Galactic plane at 870 μm (centred on 345 GHz) with the
LABOCA camera (Siringo et al. 2009) on the APEX Telescope
(Güsten et al. 2006) at a 19.′′2 spatial resolution. The highest
sensitivity part of the ATLASGAL survey (Schuller et al. 2009)
covers the Galactic plane between Galactic longitude, −60◦ ≤
� ≤ +60◦, and Galactic latitude, −1.5◦ ≤ b ≤ +1.5◦, with an
rms noise of ∼70−90 mJy/beam. The survey was then extended
towards Galactic longitude −80◦ ≤ � ≤ −60◦ and Galactic lati-
tude −2◦ ≤ b ≤ +1.0◦ with an rms noise of ∼110 mJy/beam (see
also Csengeri et al. 2014).

The observing strategy and the main steps of the data reduc-
tion procedure are described in detail by Schuller et al. (2009).
The data were reduced with the BoA software (Schuller 2012)1.
As a result of removing the correlated noise in the time series of
bolometer signals, the information of emission from extended
astronomical objects is lost. This can be partially recovered
through an iterative data reduction process (see also Belloche
et al. 2011). The data reduction of the ATLASGAL survey
has been optimized for compact sources, and convergence was
reached after 15 iterations. The maps are sensitive to emission
with angular scales up to 2.′5. The absolute flux uncertainty is
estimated to be less than ∼15% (Schuller et al. 2009). The cata-
logue optimized to extract the properties of the embedded com-
pact sources is provided in Csengeri et al. (2014), while a cat-
alogue of the more extended sources is presented in Contreras
et al. (2013; see also Urquhart et al. 2014).

2.2. Planck/HFI

Planck performed an all-sky survey between 30 and
857 GHz (Planck Collaboration I 2014), mainly focusing
on measuring the structure of the cosmic microwave back-
ground radiation (CMBR). For this purpose, it is mandatory that
all foreground emission is carefully measured, modelled, and
subtracted. To this end, the differing wavelength dependences
of the foreground emission’s components (mainly, synchrotron,
thermal free-free, and dust emission) are fully characterised
by all sky maps made in a total of nine frequencies between
30 and 857 GHz. Of relevance here is that the HFI instrument

1 http://www.eso.org/sci/activities/apexsv/labocasv.
html

(Lamarre et al. 2010; Planck Collaboration IX 2014) provides
high sensitivity maps of the dust at 353 GHz with an angular
resolution of 4.′8.

In the bright region of the Galactic plane, it is reasonable
to assume that the 353 GHz emission is dominated by the
interstellar dust, and CMBR, free-free emission, cosmic in-
frared background (CIB), and zodiacal dust emission have mi-
nor (<5%) contamination (see e.g. Planck Collaboration Int. VIII
2013; Planck Collaboration XIV 2014; Planck Collaboration Int.
XIV 2014; Planck Collaboration Int. XIII 2015, and references
therein). As a result of similar centre frequencies, overlapping
bandpasses and sensitivity at nearly matching angular scales, this
dataset therefore well complements the ATLASGAL survey to
recover emission from larger spatial scales. For this purpose, we
used the publicly available Release 1 maps of the Planck mis-
sion (Planck Collaboration I 2014).

2.3. Colour corrections for LABOCA and the HFI

Since the calibration and spectral shape of the passbands of
LABOCA and Planck’s HFI-353 GHz channel are different (see
Fig. 1 upper panel), colour corrections need to be applied to
combine both datasets. Two corrections have to be taken into
account: a) the difference of the nominal centre frequency for
both intstruments; and b) colour corrections to the intensity
calibration. Both depend on the intrinsic source spectrum and
we here assume that the spectrum across the passbands, S (ν),
can be approximated by a power law with S (ν) = S ν0 ( ν

ν0
)α,

where ν0 is the nominal centre frequency and α is the spec-
tral index of the source spectrum. The nominal centre frequen-
cies for the HFI-353 and LABOCA are 353 and 345 GHz, re-
spectively. The centre frequency correction from the HFI-353 to
LABOCA is therefore given by F(α) = (345/353)α. The inten-
sity calibration for the HFI-353 is based on the IRAS conven-
tion (Iν · ν = const.), while the LABOCA calibration is based
on planet spectra (Iν ∝ ν2). Colour corrections to other source
spectral indices can be computed by

CHFI−353(α) =

∫
R(ν)(ν/353)−1dν∫
R(ν)(ν/353)αdν

(1)

and

CLaboca(α) =

∫
R′(ν)(ν/345)2dν∫
R′(ν)(ν/345)αdν

, (2)

where R(ν) and R′(ν) are the HFI-353 and LABOCA passbands,
respectively. These corrections are shown as a function of the
source spectral index in the bottom panel of Fig. 1.

The average spectrum of the disk of the Milky Way is well
described by a modified black-body spectrum with β = 1.8
(Planck Collaboration XXV 2011; Planck Collaboration XIX
2011; Planck Collaboration XI 2014). We therefore compute
the corrections using a spectral index of α = 3.8, which yields
F = 0.917, CHFI−353 = 0.868, and CLaboca = 0.988. The HFI-
353 GHz data is provided in KCMB brightness temperature units.
Conversion to MJy sr−1 (IRAS convention) is provided by a fac-
tor of U = 287.450 MJy sr−1 K−1

CMB (Planck Collaboration IX
2014). Flux conversions to a common reference frequency at
345 GHz and source spectral index of α = 3.8 thus include

S HFI,345,3.8 = F · CHFI−353 · U · TCMB

[
MJy sr−1

]
(3)

and

S Laboca,345,3.8 = CLaboca · S Laboca

[
Jy beam−1

]
. (4)
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Fig. 1. Top: relative spectral response (passband) for Planck’s
HFI-353 GHz channel (solid line, Planck Collaboration 2013) and
LABOCA (dashed line, Siringo et al. 2009). Bottom: colour corrections
for the HFI-353 (solid line) and LABOCA (dashed line) as a function
of the spectral index of the assumed source spectrum. The dotted line
shows the conversion factor to scale the HFI-353 intensities to the nom-
inal centre frequency of LABOCA.

2.4. Combination of LABOCA and HFI

The procedure to correct for the filtered emission maps of
ground-based bolometers is very similar to that used to ac-
count for the missing short-spacing information in interferomet-
ric observations. With the aim of recovering the larger scale
emission, we therefore combined the APEX/LABOCA with the
Planck/HFI data, where the latter provides the so-called short-
spacing information.

We combined the two datasets in the Fourier domain
(uv plane thereafter) with the method described in detail in
Weiß et al. (2001). In brief, the combination replaces the cen-
tral part of the uv plane of the APEX/LABOCA data (which
is affected by the filtering) with the appropriate values calcu-
lated from the Planck/HFI data. The method relies on the ac-
curacy of the absolute calibration of the two maps and only re-
quires knowledge of the shape of the telescope beam for both
datasets. The LABOCA beam is approximated by a circular
Gaussian with a FWHM of 19.′′2 (Siringo et al. 2009). The
effective Planck/HFI beam shape is a function of the position
on sky (Planck Collaboration Int. VIII 2013). To determine the
beam variation across the ATLASGAL survey area, we fit a 2D
Gaussian to the effective beams retrieved from the Planck data
archive at different Galactic longitudes. This test shows that the
beam’s major and minor FWHM do not change significantly
across the region of interest and we used the mean effective
beam parameters for the Planck/HFI with FWHM of 5.′19 × 4.′52
(Planck Collaboration Int. VIII 2013). The position angle, how-
ever, rotates from PA = −12◦ at � = 280◦ to PA = 60◦ at
� = 330◦ and stays roughly constant out to � = 60◦. In the com-
bination we therefore used a variable position angle with val-
ues determined from a linear interpolation of the effective beams

Fig. 2. Amplitude versus spatial scales for the APEX/LABOCA (red),
original Planck/HFI (blue), corrected Planck/HFI (green) and the com-
bined dataset (black). The vertical lines indicate the centre and the ef-
fective width of the Butterworth filter used to combine both visibility
sets. The dashed grey lines indicate the visibility amplitudes of the nor-
malised LABOCA and Planck/HFI beams (scaled to a peak amplitude
of 1000 for better visualisation).

fits derived at sampling points spaced by 10◦ in Galactic longi-
tude between � = 280−330◦ and PA = 60◦ for larger Galactic
longitudes.

First, we scale the Planck/HFI and the LABOCA intensities
to a common reference frequency at 345 GHz and source spec-
tral index of α = 3.8 as described in Sect. 2.3. Then we re-grid
the Planck/HFI map to the same spatial grid as the LABOCA
map and convert both maps to a Jy pixel−1 intensity scale. Next,
both maps and beams are Fourier transformed to the uv domain,
the Planck/HFI visibility2 amplitudes are divided by the ampli-
tudes of the Planck/HFI beam (deconvolution of the Planck/HFI
data) and the result is finally multiplied by the amplitudes of the
LABOCA beam (convolution of the Planck/HFI data with the
LABOCA beam). In these steps, the amplitudes of both beams
are normalised to 1 in the uv domain.

After these operations the amplitudes of the Planck/HFI and
APEX/LABOCA can be compared to each other to determine
which part of the uv plane of the APEX/LABOCA is affected
by filtering and needs to be replaced by the Planck/HFI data
(the only free parameter in the combination). An example of the
generated amplitudes versus the spatial frequencies based on a
3 × 3 deg field is shown in Fig. 2. The figure demonstrates that
for spatial scales larger than ∼5′ the APEX/LABOCA ampli-
tudes fall systematically below the corrected Planck/HFI values
due to the spatial filtering. Likewise, for scales smaller than∼ 2.′5
the corrected Planck/HFI visibility amplitudes deviate from the
LABOCA values because of our simplistic Gaussian approxi-
mation of the Planck/HFI beam shape. We use a Butterworth
weighting function centred at a scale of 3.′8 to combine the cor-
rected Planck/HFI and the LABOCA visibility amplitudes. The
width of the weighting function was set such that for scales
>4.′3 visibilities are purely based on Planck/HFI, and for scales
<3.′5 visibilities are purely based on LABOCA. The weighting

2 The term visibility refers to the complex numbers of the Fourier
transform of surface brightness distribution.
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Fig. 3. An example field showing the original APEX/LABOCA maps from the ATLASGAL survey (left), the corresponding tile from Planck/HFI
(middle) converted to 870 μm, and the combined map (right). The intensity scale is identical on the left and right panels going from 0.35 Jy/beam
to 4 Jy/beam on logarithmic scale. Four arc-shaped, equidistant features bended to the Galactic plane are indicated in grey dotted lines and with
arrows. Red crosses indicate the position of the velocity measurements from Wienen et al. (2012).

function is indicated by the vertical lines in Fig. 2. Finally, the
combined data is transformed back to the image domain and
converted to the Jy/beam flux density scale.

To test the relative calibration between the datasets and the
critical Planck/HFI beam model, we computed the relative dif-
ference between the amplitudes of the LABOCA and corrected
Planck/HFI visibilities for spatial scales between 2.′5−5′. We
find a good agreement between both datasets with an rms of
15.5% across the survey. The relative small angular scale of
3.′8 chosen for the combination implies large correction factors
for the Planck/HFI visibility amplitudes (up to 8.2). Because
of the much higher signal-to-noise ratio of the Planck/HFI data
compared to the LABOCA data, however, this has a negligible
effect on the noise properties of the combined map, which is
dominated by the LABOCA noise. In the few outer regions of the
survey where no significant emission is seen in the Planck/HFI
data the noise level of the combined map is only ∼5% higher
than in the ATLASGAL maps.

In practice, the combination is performed with the MIRIAD
software package (Sault et al. 1995) on 3.0 × 3.0 deg subfields
of the ATLASGAL survey. To avoid Fourier-transform artifacts
from strong emission at the edge of these tiles, we multiplied
the LABOCA and the re-grided Planck/HFI data prior to trans-
formation to the uv domain with a 2D Butterworth filter. This
effectively reduces the size of each zero-spacing corrected tile
to 2.8 × 2.8 deg. To compensate for this edge effect along the
Galactic plane, the individual tiles are spaced by 1.5 deg in
Galactic longitude so that no information is lost except for the
0.1 deg broad edges in Galactic latitude. The combined data are
publicly available3.

To check the consistency of the method, we compared the
total flux density in the original Planck/HFI maps and the com-
bined maps, which were found to agree to better than 5%. This
is less than the calibration uncertainty of the LABOCA data.

3 http://atlasgal.mpifr-bonn.mpg.de/

3. Results

3.1. Large-scale structures in cold dust

In Fig. 3, we show the maps, before and after the combina-
tion procedure, of one of the most spectacular regions of the
ATLASGAL survey, 3 deg wide centred at � ∼ 332◦. The ex-
tended emission clearly adds new information to the original
LABOCA maps, and the large-scale structures become more
prominent and seemingly connected in the 2D projection of the
dust.

In particular, we visually identify elongated diffuse struc-
tures bending to the Galactic plane. These arm-like structures,
extending over almost 0.5−1◦, are visible in several regions
along the inner Galaxy. Prominent examples are shown in Fig. 3
with several, equidistant dust lanes that are parallel to each other
and are distributed over a spatial extent of ∼2◦. Pointed spectral
line observations of high density tracers towards the embedded
compact sources by Wienen et al. (2012) suggest a dispersion in
vlsr between −57 to −42 km s−1, corresponding to kinematic dis-
tance estimates of 3−3.5 kpc. Located at these distances their ex-
tension is ∼30−60 pc large. These features are qualitatively simi-
lar to the results of hydrodynamic simulations of our Galaxy (see
for example Dobbs et al. 2011, 2015), which produce equidis-
tant streams of inter-arm material produced by shears between
spiral arms. A more detailed comparison to numerical models
is, however, needed to interpret these features observed in the
large-scale structure of the Galactic cold gas.

Figure 4 shows an overview of the APEX/LABOCA and the
Planck/HFI combined maps (in the following, we simply refer
to them as combined maps) over the Galactic plane in the high-
est sensitivity part of the survey covering |�| < 60◦. This com-
plete view of the cold dust in the inner Galaxy clearly reveals the
confined dust lane of our Galaxy, which is brightest between at
� <∼ 40◦ and � >∼ 312◦. Outside these longitude ranges the inten-
sity of the emission along the plane gets significantly weaker.

The brightest and most prominent emission is observed to-
wards the Galactic centre and the central molecular zone (CMZ)
extending over several degrees (Fig. 5). The other most promi-
nent large-scale structures are associated with the brightest

A104, page 4 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526639&pdf_id=3
http://atlasgal.mpifr-bonn.mpg.de/


T. Csengeri et al.: ATLASGAL – combination with Planck data

Fig. 4. Overview of the Galactic dust emission with the Planck+APEX combined maps at 870 μm. Colour scale goes from 0.15 to 5 Jy/beam on
logarithmic scale. GMCs and cloud complexes are labelled based on Wienen et al. (2012).

known star-forming giant molecular clouds (GMCs). These were
also found to be coherent structures in the velocity domain by
Wienen et al. (2012).

As an example, in Fig. 6 we show the W43 GMC (Nguyen
Luong et al. 2011; Motte et al. 2014), which seems to be sur-
rounded by a large, extended halo over an area of ∼200×160 pc
seen in projection, and showing lower intensity diffuse emission.
To estimate the total mass towards this region, including the low
intensity diffuse gas, we sum up the emission in the area outlined
in Fig. 6. We also use the formulae and the same assumptions as
in Schuller et al. (2009) and Csengeri et al. (2014), assuming
optically thin emission of dust at 870 μm

M[M�] =
S ν R d2

Bν(Td) κν
	 6.33 × S ν ×

(
d

[kpc]

)2

, (5)

where S ν is the integrated flux density over the selected area,
and d corresponds to the heliocentric distance. To be consistent
with our previous studies (e.g. Csengeri et al. 2014), we use a
gas-to-dust mass ratio (R) of 100 and κν = 1.85 cm2 g−1 for
ν = 345 GHz from Table 1, Col. 5 of Ossenkopf & Henning
(1994). The numerical constant is obtained using a typical
dust temperature dominated by the interstellar radiation field of
Td = 18 K (Bernard et al. 2010). Here we adopt a distance of
5.5 kpc based on maser parallax measurements towards W43
(Zhang et al. 2014). This gives a total mass estimate from the
dust of ∼1.1 × 107 M�, which is in a good agreement with the
8 × 106 M� estimate of Motte et al. (2014) based on molecular
gas.

To calculate the H2 column density contrast between the dif-
fuse halo around the GMC and the star-forming sites, we use the

following expression:

N(H2) =
Fν R

Bν(Td)Ω κν μH2 mH

	 2.945 × 1022 × Fν
[Jy beam−1]

[
cm−2

]
(6)

where Fν is the flux density,Ω is the solid angle of the beam cal-
culated byΩ = 1.13×Θ2, whereΘ is the beam FWHM. The μH2

is the mean molecular weight of the interstellar medium with re-
spect to hydrogen molecules, which is equal to 2.8 (Kauffmann
et al. 2008), and mH is the mass of an hydrogen atom. The nu-
merical constant is obtained for a centre frequency of 345 GHz,
Td = 18 K, and beam size smoothed to 21′′.

We find a mean H2 column density of
1.71 ± 0.88 × 1022 cm−2 in the larger environment of the
W43 complex. This includes the halo and excludes the most
active site of star formation associated with the Z-shaped region
of W43 Main, also described by Bally et al. (2010) and Louvet
et al. (2014), shown in a smaller polygon in Fig. 6. Here we
measure a mean H2 column density of 7.45 ± 5.51 × 1022 cm−2,
which implies an increase of column density contrast of >5 be-
tween the low intensity halo and the star-forming massive ridges
going from ∼200 pc to ∼10−20 pc scales (Fig. 6).

3.2. Thin giant filaments

By revealing the structure of the lower density material con-
necting the highest density filament-fragments revealed by
ATLASGAL, the combined maps allow us to visually identify
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Fig. 5. CMZ shown in the combined maps. The intensity scale goes
from 0.4 to 34 Jy/beam on logarithmic scale.

Fig. 6. W43 GMC shown in the combined maps. The intensity scale
goes from 0.4 to 6 Jy/beam on a logarithmic scale. Dashed lines indicate
the area where the emission has been summed up for mass and column
density estimates (see text for details).

thin, but spatially elongated filamentary structures. An exam-
ple is shown in Fig. 7, revealing the large-scale environment of
the IRDC G34.43+00.24 (Garay et al. 2004). Since ATLASGAL
has a similar angular resolution as the Herschel/SPIRE 250 μm
band, the strength of the survey lies in its sensitivity to cold dust.
To illustrate this, in Fig. 7 we also show the SPIRE 250 μm
band maps observed within the Hi-GAL Herschel key pro-
gramme (Molinari et al. 2010), which has similar angular res-
olution as the combined maps. Since the highest density central
regions of these filaments are colder than the diffuse surround-
ings, they show a higher contrast in the ATLASGAL maps, as
for instance in the Herschel/SPIRE 250 μm image.

Typical examples of these kinds of confined filamentary
structures are the Snake (G11.11-0.12; Pillai et al. 2006;
Henning et al. 2010) and the Nessie filament (Jackson et al.
2010; Goodman et al. 2014), which have been studied in great
detail. These structures have been characterised as giant molec-
ular filaments (e.g. Li et al. 2013; Ragan et al. 2014) and mas-
sive molecular filaments (Battersby & Bally 2014), and based
on their dust emission have also been identified by Wang et al.
(2015). The filaments we report here typically extend over >∼0.5◦
seen in projection, and are elongated structures. Taking a typ-
ical distance of 3−6 kpc, such structures have a linear exten-
sion larger than 27−54 pc. The presented new maps of the
ATLASGAL survey contain a handful of these visually identi-
fied structures, however, it is beyond the scope of this paper to
discuss them in detail.

Fig. 7. Top: APEX/LABOCA and Planck/HFI combined map of the
IRDC G34.43+00.24. Grey contour shows an H2 column density limit
of 2.1 × 1022 cm−2. A cross indicates the position of the UC-H II region
of G34.26+0.15. Bottom: Herschel/250 μm map of the same region
from the Hi-GAL survey (Molinari et al. 2010). We show level three
data products obtained from the publicly available Herschel Science
Archive.

3.3. Properties of compact sources

The small-scale structures in the original ATLASGAL maps
have been identified using two complementary methods in
Contreras et al. (2013) and Csengeri et al. (2014). In particu-
lar, the latter method has been optimised to extract the proper-
ties of the embedded compact sources, and therefore background
emission from the embedding clouds has been systematically re-
moved. Consequently, adding the large-scale emission does not
have an impact on the determined compact source properties (see
also König et al. 2015).

4. Statistical properties of the Galactic cold dust

4.1. Dense gas fraction

In Fig. 8 we determine what fraction of the emission is contained
in the APEX/LABOCA data compared to the combined maps in
the highest sensitivity part of the ATLASGAL survey, i.e. in the
inner Galaxy with |�| < 60◦. Since the filtered APEX/LABOCA
maps are most sensitive to the highest column densities, and in-
trinsically filter the large-scale diffuse gas, the flux ratio between
the APEX/LABOCA data and the Planck/HFI combined maps is
representative of the dense gas fraction in the cold dust ( fDG). In
the following, we discuss two methods to estimate fDG based on
column densities from the maps and their implications.

First we converted the maps to Jy/pixel units and then
to avoid bias due to varying noise as a function of Galactic
longitude, we applied a σ-clipping method for both the
APEX/LABOCA only and the combined maps. We determine σ
for each individual tile by fitting a Gaussian function to the
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Fig. 8. Percentage of the total flux in the APEX/LABOCA maps com-
pared to the combined maps. Black dots correspond to the total flux
estimated from all positive pixel values, while grey dots are estimated
from summing up all pixel values above the 3σ. (See text for details.)
Error bars indicate the 15% flux uncertainty in the APEX/LABOCA
maps that dominate the noise distribution. Dotted lines show the me-
dian of the measured total flux percentage using the two methods.

histogram of pixel values considering only the low intensity be-
low 3 Jy/beam values, and excluding 20′ at the edges in Galactic
longitude and 15′ in Galactic latitude. In this region the flux was
then summed up above 3σ. The ratio of integrated flux in the two
maps gives a Galactic average of fDG ∼ 5%. Because of the con-
tribution of the lower intensity background from the Planck/HFI
data, in particular, towards the inner Galaxy, this method may
overestimate the noise in the combined maps, and therefore the
derived total flux may be underestimated. This is seen, in partic-
ular, in confused regions in the inner Galaxy, where this method
gives higher fDG. The estimated average fDG ∼ 5% flux ratio is
therefore a conservative upper limit on the dense gas fraction in
the cold gas.

We also determine fDG using a more stringent threshold con-
sidering the fraction of dense gas that is likely to be directly
involved in the star formation process. Based on Herschel stud-
ies in the Gould-belt, André et al. (2010) suggests Av ∼ 7 mag
(6.58 × 1020 cm−2)4 as a threshold for the formation of dense
cores, i.e. the entities where star formation takes place (see also
Lada et al. 2010). Using this criterion, we find fDG < 2%, which
is a factor of two lower compared to our previous, upper limit
estimate.

As shown in Fig. 8, the dense gas fraction is found to be
constant in the inner Galaxy, despite the large variation in star
formation activity. The only outstanding field is towards the
Galactic centre region (the CMZ), where both methods give a
systematically higher fDG of 10−13%. The higher dense gas
fraction found towards the Galactic centre is intriguing given the
low star formation efficiency towards this region (Immer et al.
2012; Urquhart et al. 2013; Longmore et al. 2013; Csengeri et al.
2014; Johnston et al. 2014).

Our estimates provide an independent, and consistent mea-
sure of the dense gas fraction in GMCs, relying on the same
tracer for the gas. Other commonly used methods rely on

4 We convert H2 column densities to Av using NH2/AV = 0.94 ×
1021 cm−2 mag−1 (Bohlin et al. 1978).

comparing observations of dust and molecular tracers of gas,
or different molecular tracers in external galaxies. Despite the
difference in the applied method, our results are in good agree-
ment with the upper limit estimates of 0.07+0.13

−0.05 of Battisti
& Heyer (2014), which are based on comparing masses
of dense clumps derived from the Bolocam Galactic Plane
Survey (BGPS; Aguirre et al. 2011), and GMC masses from
the 13CO (1−0) molecular line data from the Galactic Ring
Survey (Jackson et al. 2006). For comparison, Ragan et al.
(2014) also find dense gas mass fractions between 3% to 18%
for giant filaments, and based on CO measurements towards
more than 90 GMCs identified in the IVth quadrant, García et al.
(2014) estimate massive star formation efficiencies on average of
3% from their available molecular mass. These are in agreement
with our results in the present paper. Using similar datasets, Eden
et al. (2013) estimate ∼5% for the clump formation efficiency
(CFE), and find no difference for the CFE between the spiral arm
and inter-arm regions. Except for the CMZ, our results support
their conclusions. Our findings are also in good agreement with
a dense gas fraction between 2−5% obtained for normal spiral
galaxies by Gao & Solomon (2004) using HCN as a tracer for
dense gas.

4.2. Isothermal column density PDFs of the cold Galactic
dust

To analyse the statistical properties of the structures in the cold
Galactic dust emission, we show the H2 column density prob-
ability distribution function (N-PDF) for all fields (Fig. 9, up-
per panel). We calculate the H2 column density for each pixel,
assuming a single dust temperature of Td = 18 K and using
Eq. (6), and we caution that assuming a single dust temperature
is a crude simplification. More realistic H2 column density maps
should be obtained using multi-wavelength data from Herschel
surveys such as shown in e.g. Peretto et al. (2010), Schneider
et al. (2015a).

We define η = ln(NH2/〈NH2〉) as the natural logarithm of the
column density divided by the mean column density of the cor-
responding tile. We only use pixels that are above the lowest
∼3σ noise level determined from the LABOCA only maps. The
probability of the NH2 column density in the range of (NH2 ,NH2 +

dNH2 ) is then given by
∫ +∞
−∞ p(η)dη =

∫ +∞
0

p(NH2 )dNH2 = 1;
see also Schneider et al. (2015a) for more details. This formal-
ism follows previous works using numerical simulations to de-
scribe the density structure of molecular clouds (Federrath et al.
2008), and pη is adopted to describe a 2D-PDF. Projection ef-
fects average out the 3D density distribution and the underlying
dense gas fraction of the ISM, and therefore conversion from
2D column density PDFs to 3D density PDFs have to consider
the isotropy of molecular clouds. Numerical simulations show,
however, that systematic differences reflecting the gas proper-
ties can still be recovered with N-PDFs as well (e.g. Federrath
& Banerjee 2015). Conversion to volume densities (ρ-PDF) has
been discussed in Kainulainen et al. (2014).

Figure 9 (upper panel) shows the N-PDFs for all 3 by 3 deg
tiles. This representation suffers from line-of-sight contamina-
tion (see Schneider et al. 2015b; Lombardi et al. 2015) and does
not consider boundaries of molecular clouds. The characteristic
log-normal shape at low column density is, however, ubiquitous
in the inner Galaxy. Similarly, an excess at high column density
regimes is observed towards all regions, consistent with what
was found in star-forming regions (e.g. Kainulainen et al. 2009;
André et al. 2010; Lombardi et al. 2010; Froebrich & Rowles
2010; Schneider et al. 2012).
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Fig. 9. Top: column density probability distribution function (N-PDF)
for all 3 deg tiles overplotted. Only the |b| < 1◦ regions are considered
due to the increasing noise towards the edges of the ATLASGAL fields.
Red lines show the fields, which include the Galactic centre. Bottom:
the N-PDF of the inner Galaxy (|�| < 60◦). Green dashed line shows a
log-normal function withσ = 0.41 at a peak of NH2 = 1.10 × 1022 cm−2.
Red dotted line shows where excess from the power-law tail sets in at
NH2 = 2.92 × 1022 cm−2.

This excess at high-column densities in the form of a
power-law tail requires power-law density structures, which
can be achieved by either a hydrostatic configuration where
the power law arises from a balance of gravitational forces
and pressure gradients (Kainulainen et al. 2009; Tremblin
et al. 2014) or directly in a dynamically collapsing system
(Schneider et al. 2013, 2015b). From a theoretical point of
view, gravitational collapse reproduces well the observed high-
density excess (e.g. Ballesteros-Paredes et al. 2011; Kritsuk
et al. 2011; Federrath & Klessen 2013; Girichidis et al. 2014).
Other explanations, such as non-isothermal flows (Passot &
Vázquez-Semadeni 1998), have also been invoked, while mag-
netic fields have been shown to slow down the collapse process
and reduce the excess at high densities (Heitsch et al. 2001).

These characteristics show that the APEX/LABOCA and
Planck/HFI combined maps trace well a substantial fraction of
the low-density diffuse material in the Galactic plane, whose
line-of-sight averaged density structure resembles that of the
more nearby GMCs (e.g. Schneider et al. 2012; Russeil et al.
2013; Schneider et al. 2013).

We also point out that the N-PDFs are similar for each field
despite their different properties. The mean of the log-normal

fit to each tile is constant across the Galactic plane and peaks
at a value of NH2 = 1.06 × 1022 cm−2. The width of the log-
normal (ση) shows larger variations with an average value of
0.41, and a median of 0.34. We find the regions covering the
CMZ exhibit a more significant excess of high-density gas. This
is again intriguing because of the low star formation efficiency
in this region.

As a reference for extragalactic comparison, in Fig. 9 (lower
panel) we show the overall N-PDF describing the inner |�| <
60◦ range of the Galaxy. Again, the low column density part of
the distribution is well fitted with a log-normal function with the
parameters given above. A power-law tail showing an excess at
high column densities is likely associated with star formation
(e.g. Kainulainen et al. 2009; Schneider et al. 2012). The high-
density, power-law tail starts at ∼2.92 × 1022 cm−2, and has a
contribution of 2.2% to the total fraction of gas, which is con-
sistent with our results obtained in Sect. 4.1, and corresponds
to a Galactic average of dense gas fraction. This suggests that
the formation of high-density structures is highly inefficient, and
relates to the observed low efficiency of star formation in the
Milky Way. Given the high dense gas fraction towards the CMZ,
the formation of high-density structures, however, cannot be the
bottleneck for star formation process to settle in.

4.3. Mass estimation from dust for the inner Galactic plane

Since the ATLASGAL APEX/LABOCA and Planck/HFI com-
bined maps contain emission at all large scales, we use them
to assess the global properties of the dust in the inner Galaxy to
provide a reference for external galaxies. Summing up the total
flux along the Galactic plane, we determine a total flux density
of 1.93 MJy. This total flux density is assigned to a mass esti-
mate for the inner Galaxy in Fig. 10. Attributing the total emis-
sion to a lower and upper distance limit of 2 to 20 kpc, assuming
isothermal dust emission with Td = 18 K and the same dust
parameters as in Sect. 4.2, we arrive at an upper limit estimate
of Mtot <∼ 5 × 109 M� as a strict upper limit for the total gas
mass in the inner Galaxy. To obtain a more realistic estimate,
we use three models with synthetic distance distributions us-
ing a Monte-Carlo method. In Fig. 10 (top panel) we show the
observed distance distribution from Wienen et al. (2012) with
NH3 measurements towards ATLASGAL sources. In Model-1,
we use a normal distribution of distance estimates adopting the
mean distance from Wienen et al. (2012). In Model-2, we use a
normal distribution peaking at the Galactic centre of 8.5 kpc dis-
tance (Reid et al. 2014), while in Model-3 we adopt the sum of
three normally distributed components, one at the Galactic cen-
tre, and two symmetric distributions representing the molecular
ring. We show that despite the different distribution, Model-2
and Model-3 give similar estimates of ∼0.87−0.94 × 109 M�,
while Model-1 gives a lower estimate of ∼0.12 × 109 M�. The
most recent estimate for the total gas mass in the Milky Way is
1.0±0.3×109 M� (Heyer & Dame 2015), with about 70% of the
mass within the solar circle. As a comparison, the total mass of
molecular gas is estimated to be ∼2 × 109 M� using CO mea-
surements by Scoville & Solomon (1975) and Solomon et al.
(1987). Our estimate based on an independent method is within
an order of magnitude in agreement with these previous studies.

4.4. Galactic star formation rate

From the total mass estimate and the measure of the dense gas
fraction we can derive the total mass of dense gas in the inner
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Fig. 10. Top: distance distributions used for the mass estimates. Solid
line corresponds to the NH3 observations by Wienen et al. (2012).
Dashed lines show the three models discussed in Sect. 4.3. Bottom:
molecular gas mass estimate for the inner Galaxy (|�| < 60◦ and
|b| < 1.4◦) from the ATLASGAL APEX/LABOCA and Planck/HFI
combined maps of dust emission at 870 μm. Dots show the observed
total mass as a function of a single adopted distance. Dashed line shows
the mass estimation estimated with a Monte Carlo simulation. Red line
shows the total estimated molecular gas mass based on CO measure-
ments (Solomon et al. 1987).

Galaxy. Using the most realistic model for the distance distri-
bution (Model-3, see Sect. 4.3), and considering a threshold of
NH2 = 6.58 × 1021 cm−2 within the smoothed beam of the com-
bined map of 21′′, we obtain on average ∼2 × 107 M�. This
corresponds to the Galactic average of ∼2% for the fraction of
dense gas and a total mass of ∼109 M�.

Direct estimates of star formation rate (SFR) in nearby
molecular clouds with Herschel (Andre et al. 2014) give a star
formation rate per solar mass of 4.5 × 10−8 yr−1, which is very
close to the empirical values derived by Lada et al. (2012) and
Gao & Solomon (2004). Based on this we can directly mea-
sure a total SFR in the inner Galaxy of 0.9 M�/yr. Considering

the distribution of gas mass, if 70% of the star formation ac-
tivity occurs in the inner Galaxy, we obtain a total SFR of
1.3 M� yr−1 outside the Galactic centre regions. This is in good
agreement with the value of 2.44 ± 0.81 M� yr−1, estimated by
Csengeri et al. (2014) based on a different, clump and star count-
ing method using the fraction of star-forming versus quiescent
massive clumps in ATLASGAL. Independent estimates of the
Galactic SFR arrive to 2 M� yr−1 (Chomiuk & Povich 2011).
Extragalactic studies by e.g. Wu et al. (2005) use a factor of
∼4 lower conversion factor for SFR estimates, which is still con-
sistent with the estimates of Galactic SFR.

A part of the Galactic star formation is also expected in the
Galactic centre regions, however, these regions exhibit a lower
efficiency of star formation (e.g. Csengeri et al. 2014). While the
overall star formation efficiency is low, the fraction of dense gas
is found to be very high with a fraction up 13%. This indicates
that the origin of the low star formation efficiency is not due to a
low efficiency of producing dense gas, but rather on small scales
within the dense gas, which everywhere else in the Galaxy would
collapse and form stars at a fast rate.

5. Summary

We present here reprocessed maps of the ATLASGAL survey,
where the APEX/LABOCA maps have been complemented with
the Planck/HFI all-sky survey data at 353 GHz to correct for
the filtering by ground-based bolometer observations. These new
maps cover emission at larger angular scales and, thereby, reveal
the structure of cold Galactic dust in great detail. We summarise
our main findings below:

– A halo of diffuse dust emission is seen towards the direc-
tion of GMCs. We show two examples, first the � ∼ 332◦ re-
gion where large structures extending over 0.5◦ seem to bend
to the Galactic plane. As a second example, the W43 star-
forming region is shown with its surrounding dust halo. We
use the full information of dust to estimate H2 column densi-
ties and determine a density contrast of >5 between the dif-
fuse halo emission and the massive ridge of W43 Main from
∼200 to a few tens of parsec scales.

– Adding information from large angular scales helps to bet-
ter identify the large-scale properties of the cold Galactic
interstellar medium. Based on visual inspection of the data
we show examples of giant filaments, which show a lin-
ear extension larger than 0.5◦, corresponding to >30 pc at
distances above 3 kpc. These filaments have more confined
high-density regime and similarly to Nessie, they exhibit
large aspect ratios.

– The presented maps trace well a substantial fraction of the
low-density diffuse material in the Galactic plane. Using
N-PDFs we conclude that the diffuse dust emission shows
very similar properties as a function of Galactic longitude.
From this, we estimate on average an upper limit on the
dense gas fraction of 5% on the inner Galaxy and find a rel-
atively constant efficiency for the formation of dense gas.
The Galactic centre region has a larger dense gas fraction,
fDG ∼ 13−15%, which is intriguing considering its low star
formation efficiency. We conclude that the low fDG in the
Milky Way is consistent with its globally low star formation
efficiency. The high fDG observed towards the CMZ suggests
that the formation of dense gas is not the bottleneck for star
formation.

– We show that the global N-PDF for the inner Galaxy
is well described by a log-normal distribution, which is
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well explained by the large-scale turbulent nature of the
ISM. An excess at high column densities shows a power-
law tail, which contributes 2.2% to the total distribution.
This is a Galactic average for column densities above
2.92 × 1022 cm−2.

– From the total dust emission in the inner Galaxy we provide
an independent estimate of the gas mass of ∼109 M�, which
is in good agreement with the results of CO measurements
by Solomon et al. (1987).

– Based on the mass estimate for the Galactic plane and the
fDG of 2%, assuming that 70% of the star formation takes
place in the inner Galaxy, we estimate a total Galactic SFR
of Ṁ = 1.3 M� yr−1 outside the Galactic centre regions.

– Although the CMZ is efficient in producing a larger amount
of dense gas compared to other molecular clouds in the
Galaxy, the low star formation efficiency suggests that ei-
ther the local or the global properties of the dense gas must
be different from other star-forming regions.

With the presented dataset, a more detailed analysis of the dust
content of the Milky Way is now possible. Furthermore, as also
shown by Schneider et al. (2015b), the presented dataset can be
well used to complement the Herschel Hi-GAL survey (Molinari
et al. 2010) to derive column density maps of H2 at better angu-
lar resolution than only based on Herschel data.
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