Outflows and Jets: Theory and Observations Summer term 2011 Henrik Beuther & Christian Fendt

- 15.04 Today: Introduction & Overview (H.B. & C.F.)
- 29.04 Definitions, parameters, basic observations (H.B.)
- 06.05 Basic theoretical concepts & models (C.F.)
- 13.05 Basic MHD and plasma physics; applications (C.F.)
- 20.05 Radiation processes (H.B.)
- 27.05 Observational properties of accretion disks (H.B.)
- 03.06 Accretion disk theory and jet launching (C.F.)
- **10.06** Outflow interactions: Entrainment, instabilities, shocks (C.F.)
- 17.06 Outflow-disk connection, outflow entrainment (H.B.)
- 24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
- 01.07 Outflows from massive star-forming regions (H.B.)
- 08.07 Observations of extragalactic jets (C.F.)
- 15.07 Theory of relativistic jets (C.F.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss11.html beuther@mpia.de, fendt@mpia.de

Topics today

- Simple disk formation ideas

Early observational disk evidences and general disk parameters

- Disk models

- Disk dynamics

Rotational effects

Matter within central region can conserve angular momentum during collapse.

Since $F_{cen} = mv^2/r = 2Gmm_*/r^2$ (with $E_{kin} = E_{pot} \rightarrow v^2 = 2Gm_*/r$) grows faster than $F_{grav} = Gm_*m/r^2$ each fluid element veers away from geometrical center. \rightarrow Formation of disk

The larger the initial angular momentum j of a fluid element, the further away from the center it ends up \rightarrow centrifugal radius ω_{cen}

 $ω_{cen} \sim a_t \Omega_0^2 t^3 / 16 = 0.3 AU (T/10K)^{1/2} (\Omega_0 / 10^{-14} s^{-1})^2 (t/10^5 yr)^3$

 ω_{cen} can be identified with disk radius. Increasing with time because in inside-out collapse rarefaction wave moves out \rightarrow increase of initial j.

Topics today

- Simple disk formation ideas

- Early observational disk evidences and general disk parameters

- Disk models

- Disk dynamics

Early disk indications and evidence

Early single-dish observations toward T-Tauri stars revealed cold dust emission. In spherical symmetry this would not be possible since the corresponding gas and dust would extinct any emission from the central protostar. → Disk symmetry necessary!

HH30, one of the first imaged disks

Optical disk examples

The Butterfly star

Wolf et al. 2003

Approximate disk size-scales

Molecular cloud core

- Theories of early solar system require disk masses between 0.01 and 0.1M_{sun}.

→ Typical disk systems apparently have enough disk mass to produce planetary systems.
 Beckwith et al. 1990, Andre et al. 1994

Haisch et al. 2001

Topics today

- Simple disk formation ideas

- Early observational disk evidences and general disk parameters

- Disk models

- Disk dynamics

Simple case: flat, black disk

Effects of gaps on disk SED

Full line: no gap Long-dashed: gap 0.75 to 1.25 AU Short-dashed: gap 0.5 to 2.5 AU Dotted: gap 0.3 to 3 AU

To become detectable gap has to cut out at least a decade of disk size.

Additional FIR excess

- Data indicate that outer disk region is hotter than expected from flat, black disk model \rightarrow Disk flaring

Disk flaring

The scale height h of a disk increases with radius r because the thermal energy decreases more slowly with increasing radius r than the vertical component of the gravitational energy:

$$E_{vert, grav} \sim h/r * GM_*/r \sim E_{therm} \sim kT(r)$$
 with T(r) ~ r^{-3/4}
 \rightarrow h ~ k/GM_* r^{5/4}

Hydrostatic equilibrium, radiative transfer models for flared disks I

Chiang & Goldreich 1997

Hydrostatic equilibrium, radiative transfer models for flared disks II

Hydrostatic equlibrium, radiative transfer models for flared disks III

Flat spectrum disks

Flat-spectrum sources have too much flux to be explained by heating of protostar only.
In very young sources, they are still embedded in infalling envelope → this can scatter light and cause additional heating of outer disk.
→ Flat spectrum sources younger than typical class II T Tauri stars.

Calvet et al. 1994, Natta et al. 1993

Topics today

- Simple disk formation ideas

- Early observational disk evidences and general disk parameters

- Disk models

- Disk dynamics

Disk dynamics: Keplerian motion

Non-Keplerian motion: AB Aur

- Central depression in cold dust and gas emission.
- Non-Keplerian velocity profile v∝r ^{-0.4+-0.01}

 Possible explanations
 Formation of lowmass companion or planet in inner disk.

 Early evolutionary
 phase where
 Keplerian motion is
 not established yet
 (large envelope).

Accretion and mass transport

Equilibrium between F_{cen} and F_{qrav} : $mr\omega^2 = Gmm_*/r^2 = > \omega = (Gm_*/r^3)^{1/2}$

 \rightarrow no solid body rotation but a sheared flow \rightarrow viscous forces

 \rightarrow mass transport inward, angular momentum transport outward, heating

The inner disk is warm enough for large ionization: matter and magnetic field are coupled well \rightarrow accretion columns transport gas from disk to protostar

Summary

- Disks are expected from angular momentum considerations.

The SEDs of disk sources show strong FIR excess. SEDs allow to analyze various disk aspects:

 Radial and vertical disk morphology, flaring of disks
 Evolutionary stages
 Inner holes
 Gaps maybe due to planets

- Observable in NIR in absorption and in (sub)mm line/continuum emission.

- Disk lifetimes a few million years.
- T Tauri disks usually in Keplerian motion, younger disks may deviate.

Zodiacal light

Etienne Leopold Trouvelot (1827-1895)

Bob Shobbrook, Siding spring, 2 hours after sunset.

Zodiacal light is caused by reflection of dust in the ecliptic plane. The dust is reprocessed dust (not from the original formation) from comets and astroids.

Outflows and Jets: Theory and Observations Summer term 2011 Henrik Beuther & Christian Fendt

- 15.04 Today: Introduction & Overview (H.B. & C.F.)
- 29.04 Definitions, parameters, basic observations (H.B.)
- 06.05 Basic theoretical concepts & models (C.F.)
- 13.05 Basic MHD and plasma physics; applications (C.F.)
- 20.05 Radiation processes (H.B.)
- 27.05 Observational properties of accretion disks (H.B.)
- 03.06 Accretion disk theory and jet launching (C.F.)
- **10.06** Outflow interactions: Entrainment, instabilities, shocks (C.F.)
- 17.06 Outflow-disk connection, outflow entrainment (H.B.)
- 24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
- 01.07 Outflows from massive star-forming regions (H.B.)
- 08.07 Observations of extragalactic jets (C.F.)
- 15.07 Theory of relativistic jets (C.F.)

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss11.html beuther@mpia.de, fendt@mpia.de