Outflows and Jets: Theory and Observations

Summer term 2011 Henrik Beuther & Christian Fendt

```
15.04 Today: Introduction & Overview (H.B. & C.F.)
29.04 Definitions, parameters, basic observations (H.B.)
06.05 Basic theoretical concepts & models (C.F.)
13.05 Basic MHD and plasma physics; applications (C.F.)
20.05 Radiation processes (H.B.)
27.05 Observational properties of accretion disks (H.B.)
03.06 Accretion disk theory and jet launching (C.F.)
10.06 Outflow interactions: Entrainment, instabilities, shocks (C.F.)
17.06 Outflow-disk connection, outflow entrainment (H.B.)
24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
01.07 Outflows from massive star-forming regions (H.B.)
08.07 Observations of extragalactic jets (C.F.)
15.07 Theory of relativistic jets (C.F.)
```

Topics today

- Jet launching processes, magnetic field morphology and jet launching observations

- Outflow entrainment models

- Additional observables to constrain outflow/jet properties

Outflows & Jets: Theory & Observations

Jet launching from accretion disks

"magnetic accretion-ejection structures" (Ferreira et al 1995-1997):

- 1) disk material diffuses across magnetic field lines, 2) is lifted upwards by MHD forces, then
- 3) couples to the field and 4) becomes accelerated magnetocentrifugally and 5) collimated

Magnetic field lines (thick) and streamlines (dashed)

Jet launching

- Large consensus that outflows are likely driven by magnetocentrifugal winds from open magnetic field lines anchored on rotating circumstellar accretion disks.
- Two main competing theories: disk winds <==> X-winds
- Are they launched from a very small area of the disk close to the truncation radius (X-wind), or over larger areas of the disk (disk wind)?

Jet-launching: Disk winds I

- Infalling core pinches magnetic field.
- If poloidal magnetic field component has angle larger 30° from vertical, centrifugal forces can launch matterloaded wind along field lines from disk surface.
- Wind transports away from 60 to 100% of disk angular momentum.

Review: Pudritz et al. 2006

Jet-launching: Disk winds II

- On larger scales, a strong toroidal magnetic field builds up during collapse.
- At large radii (outside Alfven radius r_A, the radius where kin. energy equals magn. energy) B_φ/B_p much larger than 1
 → collimation via Lorentz-force F_I ~j_zB_φ

X-winds

- The wind is launched magneto-centrifugally from the inner co-rotation radius of the accretion disk (~0.03AU)

Ambipolar diffusion

Jet-launching points and angular momenta

- From toroidal and poloidal velocities, one infers footpoints r₀, where gas comes from
 - \rightarrow outer r_0 for the blue and red wing are about 0.4 and 1.6 AU (lower limits)
 - → consistent with disk winds
- About 2/3 of the disk angular momentum may be carried away by jet.

Topics today

- Jet launching processes, magnetic field morphology and jet launching observations

- Outflow entrainment models

- Additional observables to constrain outflow/jet properties

Driving jet and entrained molecular outflow

HH211, Gueth et al. 1999, Hirano et al. 2006, Palau et al. 2006

Outflow driving I

- Molecular outflow masses usually much larger than stellar masses
 - → unlikely that outflow-mass directly from star-disk, rather swept-up entrained gas.
- Clump mass correlates with outflow mass.
- Force observed in outflow cannot be explained just by force excerted from central object → other outflow driving and entrainment processes required.

Outflow driving II

Momentum-driven vs. energy-driven molecular outflows

- In the energy-driven scenario, the jet-energy is conserved in a pressurized bubble that gets released adiabatically as the bubble expands. This would result in large transverse velocities which are not observed → momentum conservation better!

Completely radiative shock → only dense plug at front
Completely adiabatic shock → large bow shocks with mainly
transverse motions

Both wrong → Hence intermediate solution with highly dissipative shocks required → forward motion and bow shock!

→ This can accelerate the ambient gas!

Masson et al. 1993

Outflow entrainment models I

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model

- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz instabilities form viscous mixing layer entraining molecular gas.
 - → The mixing layer grows with time and whole outflow gets turbulent.
- Broken power-law of mass-velocity relation is reproduced, but velocity decreases with distance from source → opposite to observations

Jet-bow shock model

- As jet impact on ambient gas, bow pressure gas is ejected sideways, of the ambient gas. Episodic ejection
- Numerical modeling reproduce ma

Outflow entrainment models

Turbulent jet entrainment model

- Working surfaces at the jet bounds instabilities form viscous mixing la

→ The mixing layer grows with tir

- Broken power-law of mass-velocity decreases with distance from source.

Gueth et al. 1999

Jet-bow shock model

- As jet impact on ambient gas, bow shocks are formed at head of jet. High pressure gas is ejected sideways, creating a broader bow shock entraining the ambient gas. Episodic ejection produces chains of knots and shocks.
- Numerical modeling reproduce many observables, e.g. Hubble-law.

The case of the HH34 bow shock

In the jet-frame, after subtracting the velocity of the mean axial flow, the knots are following the sides of the bow shock.

Jet simulations I

```
H<sub>2</sub> 1+0 S(1) t = 0 yr
```

3-dimensional hydrodynamic simulations, including H, C and O chemistry and cooling of the gas, this is a pulsed jet.

```
CO 0\rightarrow0 R(1) t=0 yr
```

Jet simulations II: small precession

P5
$$H_2 1 \to 0$$
 S(1) $t = 0$ yr

Jet simulations III, large precession

P20
$$H_2 \rightarrow 0$$
 $S(1) t = 0 yr$

P20 C0 0
$$\rightarrow$$
0 R(1) $t = 0 \text{ yr}$

Outflow entrainment models II

Wide-angle wind model

- A wide-angle wind (a disk-wind from larger disk-radii resulting naturally in lower velocities and lower collimations degree) blows into ambient gas forming a swept-up shell. Different degrees of collimation can be explained by different density structures of the ambient gas.
- Attractive models for older and low collimated outflows.

Circulation model

- Molecular gas is not entrain infalling gas that was deflect of high MHD pressure.
- This models were proposed it was originally considered Maybe not necessary today any

Outflow entrainment models II

Wide-angle wind model

- A wide-angle wind (a disk-wind from larger dinaturally in lower velocities and lower collimation ambient gas forming a swept-up shell. Differed can be explained by different density structure.

- Attractive models for older and low collimated

Circulation model

- Molecular gas is not entrained by underlying jet or wind, but it is rather infalling gas that was deflected from the central protostar in a region of high MHD pressure.
- This models were proposed to explain also massive outflows because it was originally considered difficult to entrain that large amounts of gas. Maybe not necessary today anymore ...

Outflow entrainment models III

- Jet launching processes, magnetic field morphology and jet launching observations

- Outflow entrainment models

- Additional observables to constrain outflow/jet properties

Collimation and pv-structure

HH212: consistent with jet-driving

VLA0548: consistent with wind-driving

- pv-structure of jet- and wind-driven models very different.
- Often Hubble-law observed → increasing velocity with increasing dist. from protostar
- Hubble-law maybe explained by: (a) decreasing grav. potential with distance to star (for central jet), (b) decreasing density gradient and hence pressure with distance from star (for larger-scale outflow), (c) continuous (or episodic) driving of the jet in a non-ballistic fashion that energy constantly gets induced in jet.

Episodic ejection events and bullets

Episodic ejection events and bullets

Cut along the jet-axis

Mass-velocity relation

- The mass-velocity relation usually displays a power-law.
- In the jet-entrainment model this can be explained by the successively larger annulli of the lower-velocity, entrained outer gas layers.
- Different power-laws and power-law breaks have been observed. This can be attributed to varying inclination angles and also periodicity.

Highest velocity molecular gas

AFGL2591, van der Tak et al. 1999

NGC6334I, Leuirni et al. 2006, T>50K

Summary

- Protostellar jets are launched magnetohydrodynamically from the disk and then accelerated magneto-centrifugally.
- Outside the Alfven radius r_A (kin. energy equals magn. energy) B_{ϕ} dominates and collimation happens via Lorentz-force.
- Jet-launching discussed as disk-wind or X-wind. Observations support disk-wind scenario (although X-wind can be considered as special case of disk-wind at the inner disk-truncation radius).
- Various outflow-entrainment models, jet-entrainment and wide-angle wind are likely the two most reasonable mechanisms.
- Outflows/jets are likely episodic.
- Observational tools like pv-diagrams, mv-diagrams and various different jet/outflow tracers allow us to constrain the models.

Outflows and Jets: Theory and Observations

Summer term 2011 Henrik Beuther & Christian Fendt

```
15.04 Today: Introduction & Overview (H.B. & C.F.)
29.04 Definitions, parameters, basic observations (H.B.)
06.05 Basic theoretical concepts & models (C.F.)
13.05 Basic MHD and plasma physics; applications (C.F.)
20.05 Radiation processes (H.B.)
27.05 Observational properties of accretion disks (H.B.)
03.06 Accretion disk theory and jet launching (C.F.)
10.06 Outflow interactions: Entrainment, instabilities, shocks (C.F.)
17.06 Outflow-disk connection, outflow entrainment (H.B.)
24.06 Outflow-ISM interaction, outflow chemistry (H.B.)
01.07 Outflows from massive star-forming regions (H.B.)
08.07 Observations of extragalactic jets (C.F.)
15.07 Theory of relativistic jets (C.F.)
```

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ss11.html beuther@mpia.de, fendt@mpia.de