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-  The quest for high spatial resolution 

-  Basic double slit experiment 
  
      
-  Application to real interferometers 

Topics today 



Θ = λ/d	


Why Interferometer? 



The need for resolution 

(Following the lecture by Jackson 2008.) 
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Some interferometers VLA 

SMA 

CARMA PdBI 

Westerbork 

ATCA 



LOFAR 

Future project: Square Kilometer Array (SKA) à after 2020 



Atacama Large Millimeter Array (ALMA) 

~60 dishes in the 
Atacama desert at 
5000m altitude 
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Young's slits revisited 

• Point source 

• d 

• Fringes of 
separation 
λ/d 



Larger source 

• d 

• Source subtends an 
angle 0.4 λ/d 

• Fringes move by 
0.4 λ/d. Incoherent 
sources -> add 
intensities, fringes 
start to add out 
destructively 

Define |fringe visibility| as (Imax-Imin)/(Imax+Imin) 



Still larger source 

• Source size 
gets to λ/d 

• No fringes remain 
(cancellation). Little 
fringing seen for 
larger sources than 
λ/d either. 



Effect of slit size 

• Same size source, 
but smaller slit 

• Increased fringe 
spacing, so fringes 
visible again 



Visibility: V = (Imax-Imin)/(Imax+Imin)  

-  V decreases with increasing source size. Goes to 0 for source larger λ/d 
-  For fixed source size, V increase with decreasing d  
-  For fixed source size and d, V increases with increasing λ 
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Application to real interferometers I 

-  Path delay is B.s = B cos(Θ) à phase delay kB.s, where k = 2π/λ 

-  Response of interferometer: 
 
with s+σ  vector to part of source 
Since σ||b  B.σ = b.σ 

B: vector separating telescopes 
s: unit vector to source 

Θ	




Application to real interferometers II 
B: vector separating telescopes 
s: unit vector to source 

Θ	


                      à                                       where           solely dependent  
                                                                on array geom., thus before int. 
 
à  Response of interferometer is fourier transformation of intensity distribution!   
                     Phase has structure information, amplitude intensity information. 



uv plane I 

Decompose σ and b in Cartesian coordinates: 
         σ = xi + yj,          where i and j  are unit vectors on sky 
         b = ui + vj,         where u and v are projections of baseline 
                                     positions on the sky 
     à b.σ = ux + vy 
 
The response after “fringe stopping” then becomes: 
 
 
 
 
which is an explicit 2D Fourier transformation. u and v are defined in 
wavelengths, hence  k became 2π. 
 



uv plane II 

Schematic of uv change with projected baseline on the sky. 



uv plane III 

Fourier transform of double source results in stripes in uv-plane. 
à uv ellipse of 1 antenna pair crosses these stripes several times per 24h. 
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Dirty Beam Shape and N Antennas 
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Dirty Beam Shape and N Antennas 
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Dirty Beam Shape and N Antennas 
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Dirty Beam Shape and N Antennas 
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Dirty Beam Shape and N Antennas 
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Dirty Beam Shape and N Antennas 
8 Antennas x 240 samples 
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(Courtesy Dave Wilner) 



Dirty Beam Shape and N Antennas 
8 Antennas x 480 samples 
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(Courtesy Dave Wilner) 



Deconvolution 

     We want to get: 
 
But we get only the so-called dirty image 
 
  where            is the discrete sampling function in the uv-plane. 
                           
                    Using the convolution theorem, we can write: 
 
 
 
              where B is: 
 
         the co-called dirty beam à fourier transform of sampling function 
                           
                 à This can be considered as a proxy of the spation resolution. 
 
 
        à Recovering I(x,y) is deconvolution problem where additional info 
            has to be supplied. 
 



Deconvolution - Cleaning 

-  First algorithm bei Hogbom 1974, based on the assumption that the 
    image is a superposition of many point sources. 
 
-  Identify strongest point in map and subtract the dirty beam at  
    that position, usually 5-10% of intensity to increase stability 

-  Subtracted component is called clean component. 

-  This is done iteratively until the residual map only contains noise. 
    Usually several 100 iterations. 

-  The clean component map is then again convolved with the so-called 
     “clean beam”. To derive the final map the residuals are added. 

-  The clean beam is usually a 2-D Gaussian fit to the central peak of the 
    dirty beam. 



Clean Example 
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uv plane V 

Simulations of obs. of a large Gaussian source with short and long baselines. 



Phased array interferometry I 
Omni-directional radiation 
pattern of dipol antenna 

-   LOFAR – low-frequency array 
-   10 to 250 MHz, corresponds to 30m to 1.2m wavelengths. 
-  Resolution: 1292 km, i.e., 0.65’’ at 60 MHz, 0.2’’ at 240 MHz 
-  The direction (beam) is chosen electronically by introducing phase  
     delays between antennas (see next slide). 
-  Can observe several directions simultaneously. 
-  40 stations in Netherland, a few more in Germany, UK, France, Sweden. 
-  Hardware comparably cheap, software requirements enourmous! 
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Phased array interferometry II 

-  Dish size corresponds to largest distance between dipoles 
-  Baseline corresponds to distance between stations. 

-  Future of phased arrays à Square kilometer array (SKA)  



Square kilometer array (SKA) 

-  Total collecting area of approximately 1 square kilometer 
-  Combination of phased array and parabola dishes 
-  World-wide consortium, location in South Africa and Australia 
-  Frequencies between 70MHz and 10GHz (or even higher) 
-  Start planned for 2019, finished maybe by 2023 … 
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