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2 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
Received 2010 May 19; accepted 2010 July 29; published 2010 October 1

ABSTRACT

We present radiation hydrodynamic simulations of the collapse of massive pre-stellar cores. We treat frequency-
dependent radiative feedback from stellar evolution and accretion luminosity at a numerical resolution down to
1.27 AU. In the 2D approximation of axially symmetric simulations, for the first time it is possible to simulate the
whole accretion phase (up to the end of the accretion disk epoch) for a forming massive star and to perform a broad
scan of the parameter space. Our simulation series evidently shows the necessity to incorporate the dust sublimation
front to preserve the high shielding property of massive accretion disks. While confirming the upper mass limit of
spherically symmetric accretion, our disk accretion models show a persistent high anisotropy of the corresponding
thermal radiation field. This yields the growth of the highest-mass stars ever formed in multi-dimensional radiation
hydrodynamic simulations, far beyond the upper mass limit of spherical accretion. Non-axially symmetric effects
are not necessary to sustain accretion. The radiation pressure launches a stable bipolar outflow, which grows in angle
with time, as presumed from observations. For an initial mass of the pre-stellar host core of 60, 120, 240, and 480 M�
the masses of the final stars formed in our simulations add up to 28.2, 56.5, 92.6, and at least 137.2 M�, respectively.
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1. INTRODUCTION

The understanding of massive stars still suffers from the lack
of a generally accepted formation scenario. Despite the strong
limitations in observations of massive star-forming regions com-
pared to their low-mass counterparts, past studies obtained com-
mon features of star formation, suggesting that the formation of
massive stars in the first order can be treated analogous to low-
mass star formation. All epochs of the classical picture of star
formation, such as gravitationally collapsing massive cores (e.g.,
Ho & Haschick 1986; Keto et al. 1987; Zhang & Ho 1997; Birk-
mann et al. 2007) and collimated jets as well as wide-angle bipo-
lar outflows (e.g., Henning et al. 2000; Zhang et al. 2002, 2007;
Wu et al. 2005; Beuther et al. 2005a) were observed. Even cir-
cumstellar disks, e.g., IRAS 20126+4104 (Cesaroni et al. 1997;
Zhang et al. 1998; Cesaroni et al. 2005) and AFGL 490 (Harvey
et al. 1979; Torrelles et al. 1986; Chini et al. 1991; Davis et al.
1998; Lyder et al. 1998; Schreyer et al. 2002, 2006), or rather
large-scale toroid (Beltrán et al. 2004, 2005) and flattened ro-
tating structures (Beuther et al. 2005b; Beuther & Walsh 2008)
could be revealed. Reviews of observations related to a proposed
picture of evolutionary sequences of massive star formation are
given in Beuther et al. (2007) or Zinnecker & Yorke (2007).

Previous theoretical models focused on different points of
view, namely, the competitive accretion (Bonnell et al. 1998;
Bonnell & Bate 2002; Bonnell et al. 2004; Bate 2009a, 2009b)
and the turbulent core model (McKee & Tan 2003), but they
agree on the formation of accretion disks.

If the formation of high-mass stars is therefore treated as a
scaled-up version of low-mass star formation, a special feature
of these high-mass protostars is the interaction of the accretion
flow with the strong irradiation emitted by the newborn stars
due to their short Kelvin–Helmholtz contraction timescale (Shu
et al. 1987). Previous one-dimensional (1D) studies (e.g., Larson
& Starrfield 1971; Kahn 1974; Yorke & Krügel 1977; Wolfire

& Cassinelli 1987; Edgar & Clarke 2004) agree on the fact that
the growing radiation pressure potentially stops and reverts the
accretion flow onto a massive star yielding an upper mass limit
of approximately 40 M�.

But this radiative impact strongly depends on the geometry
of the stellar environment (Nakano 1989). The possibility was
suggested to overcome this radiation pressure barrier via the
formation of a long-living massive circumstellar disk, which
forces the generation of a strong anisotropic feature of the ther-
mal radiation field. Earlier investigations by Yorke & Sonnhalter
(2002) tried to identify such an anisotropy, which they called
the “flashlight effect,” in two-dimensional (2D) axially and mid-
plane symmetric radiation hydrodynamic simulations, similar to
our own. Their simulations show an early end of the disk ac-
cretion phase shortly after its formation due to strong radiation
pressure. The final star masses are only marginally higher than
the mass limit in spherical symmetry, even if the frequency
dependence of the radiation is considered. The radiative feed-
back was treated under the flux-limited diffusion approximation
(hereafter called FLD), but computed for several frequency bins.
Due to the high computational cost of the frequency-dependent
FLD solver in Yorke & Sonnhalter (2002), it was unfortunately
not possible to study the reason for the early fate of the disk ac-
cretion phase in detail. Krumholz et al. (2009) stated that the cir-
cumstellar disk in the simulations of Yorke & Sonnhalter (2002)
lost its shielding property because the disk region cannot be fed
in axially symmetric configuration. Contrary to the stable radi-
ation pressure-driven outflows in Yorke & Sonnhalter (2002),
they discovered in their own three-dimensional (3D; frequency-
averaged) radiation hydrodynamic simulations (Krumholz et al.
2007, 2009) an instability in the outflow region, leading to
further accretion onto the disk. They propose that this so-called
3D radiative Rayleigh–Taylor instability requires non-axially
symmetric modes to occur (Krumholz et al. 2009) and that ra-
diation pressure therefore cannot halt the flow of gas and dust
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Figure 1. 2D grid (64 × 16) in spherical coordinates with logarithmically increasing radial resolution, a central sink cell of radius rmin = 10 AU, and an outer boundary
at rmax = 0.1 pc. (a) Global image of the total computational domain up to the outer radius of rmax = 0.1 pc. (b) Zoom-in image of the central 100 × 100 AU. The
innermost cells have a resolution of Δr × rΔθ = 1.27× 1.04 AU.

in any direction. This explanation suffers from a lack of phys-
ical arguments and requires further detailed investigation due
to the fact that first the classical Rayleigh–Taylor instability is
a 2D instability and second radiation cannot simply be treated
as a fluid in general (as it is in the sense of a Rayleigh–Taylor
instability). At the least, it remains unclear if this instability
is the most important one. With the help of the unstable polar
region, the most massive star in their simulations grows up to
41.5 M� with an ongoing accretion phase, as the simulation is
not finished yet.

Contrary to this explanation of the short accretion phases
in the 2D simulations by Yorke & Sonnhalter (2002), we
demonstrate here in detail the need for including the radiation
physics at the dust sublimation front of the forming star to
compute the correct anisotropy of the re-emitted radiation by
dust grains. Due to the huge sink cells used in the simulations
by Yorke & Sonnhalter (2002), the luminosity directly acts on
a disk region far beyond the actual dust sublimation front. The
interaction of the radiation with the accretion flow at the dust
sublimation front is therefore artificially shifted to the radius
of the sink cell, where the circumstellar disk would originally
be shielded from the direct stellar irradiation. In this region,
the optical depth of the IR flux in the radial direction is much
smaller than at the realistic location of the dust sublimation
front, yielding a much higher fraction of isotropy of the radiation
field. As shown in the well-established spherically symmetric
studies, this isotropic radiation field is able to stop and revert
the accretion flow onto the forming star.

Our simulations focus on the accretion onto a single massive
star in the center of the core. We incorporate the dust sublimation
front of the forming star, resolve the vicinity of the star down
to 1.27 AU, and evolve the system up to the order of 105 yr
(10 times longer than ever studied before), including the whole
disk accretion phase of the forming star. We scan the broad
parameter space of numerical configurations as well as different
initial conditions in several simulation series.

In Section 2, we describe the details of the self-gravity
radiation hydrodynamic code that has been used. The physical
initial conditions of the pre-stellar cores as well as the numerical
configuration of the simulations are described in Section 3.
In Sections 4 and 5, we present the results of 1D and 2D

radiation hydrodynamic simulations of massive pre-stellar core
collapses, respectively, focusing on the radiative feedback onto
the accretion flow while resolving the dust sublimation front.
A discussion (Section 6) and summary of the most important
results (Section 7) including a comparison of our results to the
simulations by Yorke & Sonnhalter (2002) and Krumholz et al.
(2007, 2009), a discussion of our assumptions, as well as a brief
outlook on the future direction of this research project, e.g., 3D
simulations, close this paper.

2. PHYSICS AND NUMERICS

In this section, we outline the ingredients and default numer-
ical configuration of the self-gravity radiation hydrodynamic
code that we use to model the collapse of massive pre-stellar
cores. Section 2.1 comprises the motivation for our choice of
a grid in spherical coordinates and highlights the step forward
in resolution that we obtain in our simulations compared to the
previous research. Sections 2.2 and 2.3 describe the features
and the configuration of the hydrodynamic solver including full
tensor viscosity, for which we use the open source magneto-
hydrodynamic code Pluto3 (Mignone et al. 2007). Further sec-
tions describe our newly developed modules for self-gravity
(Section 2.4) and frequency-dependent approximate radiation
transport (Section 2.5). We close this section with the descrip-
tion of the pre-calculated, tabulated dust (Section 2.6) and stellar
evolution model (Section 2.7) used in the simulations.

2.1. Discretization of the Computational Domain

In our simulations, we use a time-independent grid in spheri-
cal coordinates with logarithmically increasing radial resolution
toward the center. The usage of a radially increasing resolution
toward the center guarantees the possibility to study the radiative
feedback in the central core regions down to a minimum grid
cell size of Δr × rΔθ = 1.27 AU × 1.04 AU. An example of
such a 2D grid is displayed in Figure 1. This type of grid is well
adapted for the analysis of the interaction of an accretion flow
onto a massive star along with the stellar irradiation it generates,
because the stellar gravity as well as the stellar radiative force is
aligned with the radial coordinate axis. Furthermore, in contrast
to, e.g., Cartesian coordinates, the usage of spherical coordinates



1558 KUIPER ET AL. Vol. 722

Table 1
Resolution of Different Radiation Hydrodynamic Simulations of a Collapse of a Slowly Rotating Massive Pre-stellar Core

Authors Resolution in AU in Regions of Radius of

Lowest Resolution Highest Resolution Sink Cells (AU)

Yorke & Sonnhalter (2002) 3202 802 80
Krumholz et al. (2007) 9663 7.53 0–30
Krumholz et al. (2009) 6453 103 0–40
This study, one dimension 1540 0.08 1.0
This study, two dimensions 2319 × 1911 1.27 × 1.04 10.0

Notes. The simulations of Yorke & Sonnhalter (2002) were performed on a non-adaptive 2D grid in cylindrical
coordinates with three levels of refinement. The given resolution (Δr × Δz) of Yorke & Sonnhalter (2002)
represents the case of an Mcore = 60 M� pre-stellar core. The resolution for the lower mass Mcore = 30 M�
collapse was a factor of 2 better. The resolution for the higher mass Mcore = 120 M� collapse was a factor of
2 worse. The simulations of Krumholz et al. (2007, 2009) were performed on a 3D Cartesian adaptive mesh
refinement grid. The given resolution (Δx × Δy × Δz) represents the lowest and highest resolution during the
simulation. The radiation from the sink cells is added to their computational grid using a smooth weighting
function inside the so-called accretion radius, which is four times the highest resolution of the grid (Krumholz
2005). The resolution of our own grids in spherical coordinates is given in units of arc length (Δr × (rΔθ )).

guarantees a strict angular momentum conservation. The polar
discretization Δθ of the grid is uniformly fixed and covers an
angle of π/2 from the top polar axis to the forming disk mid-
plane, assuming midplane symmetry as in Yorke & Sonnhalter
(2002). The polar resolution rΔθ of the spherical grid auto-
matically increases toward the regions of interest around the
centrally forming star, where high resolution is desired. To even
enhance this focus on the inner parts of the pre-stellar core and
saving computational effort in the outer parts far away from
the dust radiation interaction layer, we choose a logarithmically
increasing radial resolution of the grid. Thus, the non-adaptive
grid setup impeded the study of potential fragmentation in the
outer core regions. The radial resolution Δr at a radius r of a
computational domain with Nr grid cells in the radial direction
is given by

Δr(r) = r(10f − 1) (1)

with f = log(rmax/rmin) /Nr , where rmin and rmax represent
the inner and outer radii of the computational domain. A
comparison of our achieved resolution to previous massive pre-
stellar core collapse simulations by Yorke & Sonnhalter (2002)
and Krumholz et al. (2007, 2009) is given in Table 1.

The forming high-mass protostellar object at the center of
the core is represented by a dedicated stellar evolution model
(presented in Section 2.7) inside the central sink cell with radius
rmin at the origin of the coordinate system using pre-calculated
stellar evolutionary tracks for accreting high-mass protostars
(Hosokawa & Omukai 2009).

2.2. Hydrodynamics

To follow the motion of the gas, we solve the equations of
compressible hydrodynamics

∂tρ + �∇ · (ρ �u) = 0, (2)

∂t (ρ �u) + �∇(ρ �u�u + P ) = ρ �a, (3)

∂tE + �∇ · ((E + P ) �u) = ρ �u · �a − �∇ �Ftot (4)

with the acceleration source term �a = ∑
i �ai , which includes the

physics considered in addition to the equations of gas dynamics
(Euler equations) such as shear viscosity (�a1), central gravity of
the forming star (�a2), self-gravity (�a3), and radiation transport
and stellar radiative feedback (�a4). �Ftot denotes the flux of the
total radiation energy density. These additional components are
described in the following subsections. The evolution of the gas
density ρ, velocity �u, pressure P, and total energy density E is
computed using the open source magneto-hydrodynamic code
Pluto3 (Mignone et al. 2007).

Pluto is a high-order Godunov solver code, i.e., it uses a
shock-capturing Riemann solver within a conservative finite
volume scheme. The numerical configuration of our simulations
makes use of a Strang operator splitting scheme for the different
dimensions (Strang 1968). Our default configuration consists
further of a Harten–Lax–Van Leer Riemann solver and a so-
called minmod flux limiter using piecewise linear interpolation
and a Runge-Kutta 2 (RK2) time integration, also known
as the predictor–corrector method (compare van Leer 1979).
Therefore, the total difference scheme is accurate to the second
order in time and space.

To close the system of Equations (2)–(4), we use an ideal gas
equation of state

P = (γ − 1) Eint, (5)

which relates the gas pressure P to the internal energy Eint =
E − 0.5ρu2. The adiabatic index γ is set to 5/3.

To limit the range of densities, the so-called floor value of
the density is chosen to be ρ0 = 10−21 g cm−3. This floor
value occurs during the simulations only in regions where the
radiation pressure-driven outflow is depleting the density of the
corresponding grid cells in the radially outward direction. Thus,
the choice of the floor value does not influence the level of
accretion onto the newly forming star we investigate.

The various sources of additional acceleration �a = ∑
i �ai that

enter the equations of hydrodynamics in Equations (3) and (4)
are discussed in the following sections and include viscosity,
gravity of the central star as well as self-gravity of the core, and
radiative feedback.

2.3. Viscosity

In the 2D simulations, we consider physical shear viscosity of
the circumstellar disk medium to mimic the effect of angular mo-
mentum transport (via e.g., the magneto-rotational instability,
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spiral arms, disk winds, and jets). 2D axially symmetric simu-
lations without any shear viscosity yield the formation of ring
instabilities in the circumstellar disk. The rings would be un-
stable if non-axially symmetric modes were allowed, leading to
the formation of spiral arms and therefore to angular momentum
transport as discussed by Yorke et al. (1995).

Full physical tensor viscosity is included in the current ver-
sion of the open source magneto-hydrodynamic code Pluto3
(Mignone et al. 2007). Viscosity enters the equations of hydro-
dynamics in Equations (3) and (4) as an additional source of
acceleration

�a1 =
�∇Π
ρ

. (6)

The components of the viscous stress tensor Π are given (in
Cartesian coordinates) by

Πij = η

(
∂jui + ∂iuj − 2

3
δij ∂kuk

)
+ ηbδij ∂kuk (7)

with the shear viscosity η, the bulk viscosity ηb, and the
Kronecker symbol δij . Further details on the analytical treatment
of viscosity can, e.g., be found in Landau & Lifshitz (1987). We
assume for the bulk viscosity ηb = 0.

The (shear) viscosity

η = ρν (8)

is described via the so-called α-parameterization of Shakura
& Sunyaev (1973), in which the dynamical viscosity ν is set
proportional to the product of a typical velocity and length scale
of the system under investigation, here the local sound speed cs
and pressure scale height H:

ν = αcsH. (9)

We further approximate the local pressure scale height H by

H = cs

ΩK(r)
(10)

with the Keplerian angular velocity

ΩK(r) =
√

GM(r)

r3
(11)

derived from the equilibrium between gravity and the centrifugal
force. The mass M(r) inside the radius r is calculated by the
spatial integral of the density distribution plus the central stellar
mass M∗ inside the sink cell:

M(r) = M∗ + 2π

∫ r

0
dr

∫ π

0
dθρ(r, θ )r2 sin(θ ). (12)

Using the relation (10) we substitute the local sound speed in
Equation (9) yielding

ν = αΩK(r)H 2. (13)

Introducing the dimensionless parameter H/R, the aspect ratio
of the circumstellar disk, leads to

ν = αΩK(r)R2

(
H

R

)2

(14)

with the cylindrical radius R = r sin(θ ). If the viscosity is an
effect of turbulent transport of angular momentum, e.g., by the
magneto-rotational instability (Balbus & Hawley 1991; Hawley
& Balbus 1991; Balbus 2003) or the baroclinic instability (Klahr
& Bodenheimer 2003), it is observed that the strength of the
stresses is proportional to the thermal pressure. This is the
fundamental assumption of the alpha ansatz by Shakura &
Sunyaev (1973). This relation (Equation (9)) holds because
hotter and thicker disks can support higher levels of turbulence.
The situation is reversed for self-gravitating disks. Here, hot
disks are usually Toomre-stable and will not produce gravito-
turbulence. On the contrary, the disks will cool down to the
marginally unstable Toomre values and establish a turbulent
state where the level of turbulence is set by the equilibrium
of energy release and radiative cooling (Gammie 2001). For
that reason, we choose a viscosity prescription independent of
the actual disk temperature (e.g., a fixed H/R ratio of 0.1 and
α = 0.3) but only on the local mean (Keplerian) rotation profile.
This way, we ensure that cool and thin disks can obtain the high
viscosity values they deserve. Our ansatz is equivalent to the
so-called β-viscosity ansatz for self-gravitating disks by Duschl
et al. (2000), which is also independent of the temperature, with
a β-parameter of β ≈ 3 × 10−3.

2.4. Gravity

The calculation of the gravitational potential Φ is split into the
gravity of the central star in the sink cell Φ∗ and the self-gravity
of the mass in the computational domain Φsg:

Φ = Φ∗ + Φsg. (15)

The associated accelerations �a2 + �a3 enter the hydrodynamics as
a source term for momentum and energy in Equations (3) and
(4).

The acceleration vector �a2 of the gravity of the central star is
given analytically by

�a2 = −�∇Φ∗ = �∇ GM∗
r

= ∂r

GM∗
r

�er = −GM∗
r2

�er . (16)

Such external gravity (from point sources) is supported in
Pluto3 by defining the gravitational potential Φ∗ or the resulting
acceleration vector �a2.

The acceleration �a3 due to self-gravity is given by

�a3 = −�∇Φsg, (17)

in which the gravitational potential Φsg is determined via
Poisson’s equation:

�∇2Φsg = 4πGρ. (18)

We implemented a solver for Poisson’s equation into our version
of the Pluto code in a modular fashion. The module solves
the equation via a diffusion ansatz. The desired approximate
matrix inversion is done using the so-called GMRES method.
The accuracy of the Poisson solver, i.e., the abort criterion for
the approximate matrix inversion, is chosen to 0.001% relative
accuracy of the gravitational potential (ΔΦsg/Φsg � 10−5).

The outer radial boundary values of the gravitational potential
are calculated via a Taylor expansion of the density distribution,
described for example in Black & Bodenheimer (1975). Several
tests we performed indicate that it is sufficient to just account
for the monopole solution of the Taylor expansion, i.e., the
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total mass of the core. In our default configuration of the pre-
stellar cores (see Section 3), the mass distribution is perfectly
spherically symmetric at the beginning of the simulation and
afterward becomes highly concentrated in the inner region of
the computational domain far away from the outer boundary,
both yield analytically the monopole solution at the outer
boundary. To control the resolution, which is necessary to
resolve the physics of self-gravity correctly, e.g., preventing
artificial fragmentation, we monitor the so-called Truelove
criterion, derived in Truelove et al. (1997). The criterion requires
one to resolve the Jeans length

λJ =
√

πc2
s

Gρ
(19)

at least by an a priori defined number of grid cells. The inverse
of the number of necessary grid cells per Jeans length is the
so-called Jeans number

J = Δx

λJ
. (20)

Truelove et al. (1997) suggested a Jeans number of at least
J � 0.25. The worst case during our simulations occurs in the
high-density region around the forming star with approximately
a maximum density of ρ � 10−11 g cm−3, a minimum tempera-
ture of T ≈ 100 K, and a resolution of the order of Δr ≈ 1 AU.
This leads to a Jeans number of J ≈ 0.09, i.e., the Jeans length
λJ is at the least resolved by 11 grid cells.

2.5. Radiation Transport

The importance of the frequency dependence of the stellar
spectrum when calculating the radiative feedback of a massive
star was already shown in radiation hydrodynamic studies by
Yorke & Sonnhalter (2002) and Edgar & Clarke (2003) as well
as in radiation transport simulations without hydrodynamics
by Krumholz et al. (2005). On the other hand, no frequency-
dependent radiation hydrodynamic study related to massive
star formation was carried out since the work by Yorke &
Sonnhalter (2002) in more than one dimension and due to
the huge computational overhead of their frequency-dependent
FLD routine it was neither possible to study a large number of
different initial conditions (to scan the parameter space), nor to
perform high-resolution simulations of the accretion process.

Furthermore, stellar radiative feedback onto the dynamics of
the environment plays a crucial role in the formation of massive
stars. On one hand, the heating will probably prevent further
fragmentation of the cloud by enhancing the Jeans mass (e.g.,
Krumholz et al. 2007). On the other hand, the dusty environment
feels the radiative force when absorbing the radiation due to
momentum conservation, which potentially stops the accretion
process for highly luminous massive stars.

To study the radiative feedback of massive stars on their
own accretion stream in 1D, 2D, and 3D simulations we
implemented a fast, robust, and accurate frequency-dependent
radiation transport solver in spherical coordinates into our
version of the Pluto code. To achieve a fast solver for the
frequency-dependent problem we split the radiation field into
the stellar irradiation and thermal dust emission. The basic
methodology of the hybrid scheme is to perform a frequency-
dependent ray-tracing step for the stellar irradiation and shift
the re-emission of the photons by the dusty environment to a
frequency-averaged FLD solver in the equilibrium temperature

Figure 2. Frequency-dependent mass absorption coefficients κ(ν) in tabulated
form from Laor & Draine (1993).

approximation. A derivation of the hybrid scheme and numerical
details of the implementation of this newly developed radiation
transport method are given in Kuiper et al. (2010), including a
detailed comparison of the method with the standard radiation
transport benchmark test by Pascucci et al. (2004).

2.6. Dust Model

For the implementation of realistic mass absorption co-
efficients κ(ν) for the frequency-dependent radiation trans-
port module, we use an opacity table of Laor & Draine
(1993), including 79 frequency bins, shown in Figure 2.
The opacity table covers the full frequency range from mi-
crowave and infrared radiation up to soft X-rays. It de-
scribes a mixture of dust grains in the size range between
0.005 and 10.0 μm. The grains are taken to be spherical and
consist of amorphous silicate with a composition like that of
olivine. The model does not include ice mantles, which will
roughly double the opacity at temperatures below ∼100 K
(e.g., Ossenkopf & Henning 1994). As shown in Figure 2, this
dust grain mixture takes into account the strong absorption/
emission features at 9.7 μm and 18 μm observed in the inter-
stellar medium. The corresponding frequency-averaged Planck
and Rosseland mean opacities are shown in Figure 3 as a func-
tion of temperature.

Aside from the dust opacities, the opacity of a given grid cell
also linearly depends on the local dust-to-gas mass ratio. The
initial dust-to-gas mass ratio

(
Mdust/Mgas

)
0 is fixed to 1%. Gas

and dust are treated as a single fluid, so the dust-to-gas mass ratio
only shrinks due to possible evaporation of the dust grains in hot
regions (around the central massive star). The local evaporation
temperature of the dust grains is calculated by using the formula
of Isella & Natta (2005)

Tevap = gρβ (21)

with g = 2000 K, β = 0.0195, and the gas density ρ given in
g cm−3. The formula describes a power-law approximation of
the evaporation temperatures Tevap determined by Pollack et al.
(1994). A smooth spatial and temporal transition of the associ-
ated dust-to-gas mass ratio between completely evaporated and
condensated regions is achieved via the transition function

Mdust

Mgas
(�x) =

(
Mdust

Mgas

)
0

(
0.5 − 1

π
arctan

(
T (�x) − Tevap(�x)

100

))
.

(22)
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Figure 3. Calculated Rosseland κR and Planck κP mean opacities as a function
of dust temperature. Here, the possible evaporation of dust grains at high
temperatures (and/or low densities) is neglected, but considered in the dust-
to-gas mass ratio Mdust/Mgas of each grid cell, cf. Figure 4.

The transition slope is displayed in Figure 4 as a function of the
temperature for a high gas density of ρ = 10−10 g cm−3 as well
as for the floor value of the density ρ0 = 10−21 g cm−3.

2.7. Stellar Evolution Model

The evolution of the central star, described by a central sink
cell, is coupled to the hydrodynamics of the pre-stellar core by
measuring the mass flux into the sink cell. The initial mass of
the star at the beginning of the simulation is simply given by
the integral over the initial density distribution up to the radius
rmin of the sink cell and is therefore in all cases less than a few
percent of 1 M�. The mass, which enters the sink cell during the
hydrodynamics, is assumed to be accreted onto the central star.
From the mass flux ρ �u into the sink cell during the timestep Δt
we calculate the accretion rate Ṁ onto the central star via

Ṁ = 2π

∫ π

0
dθ ρ �u · �err

2
min sin θ. (23)

Integrating the accretion rate Ṁ over the time yields the growth
of the stellar mass M∗:

M∗(t + Δt) = M∗(t) +
∫ t+Δt

t

Ṁdt = M∗(t) + ṀΔt. (24)

A potential decrease of the accretion rate due to outflows or jets
(driven by magnetic forces) in the inner region below the sink
cell radius is currently not considered. The total luminosity Ltot
is given by the sum of the accretion luminosity Lacc and the
stellar luminosity L∗:

Ltot(t) = Lacc(t) + L∗(t). (25)

The accretion luminosity is directly calculated from the hydro-
dynamic simulation via

Lacc = GM∗
R∗

Ṁ (26)

with the stellar radius R∗. The stellar luminosity and the stellar
radius are obtained via fits to the pre-calculated evolutionary
tracks by Hosokawa & Omukai (2009). These evolutionary
tracks of massive stars depend on the stellar mass as well as
on the actual accretion rate. We use polynomial fits to the mass

Figure 4. Transition slope of the local dust-to-gas mass ratio as a function of
the temperature due to evaporation of dust grains for two different gas densities.
The vertical lines mark the corresponding evaporation temperatures.

relation up to tenth order for separated mass ranges (an example
of these fits is shown in Figure 5) and linear regression for
the dependence on the instantaneous accretion rate. For stellar
masses below the accessible data (0.05 M� in the worst case)
the stellar luminosity is assumed to be negligible and the stellar
radius is assumed to be constant up to the first data point.

Given the stellar radius and total luminosity, the stellar
effective temperature T∗ is calculated from

Ltot = 4πR2
∗σSBT 4

∗ . (27)

3. INITIAL CONDITIONS AND NUMERICAL
CONFIGURATION

Using the newly developed modules of the self-gravity ra-
diation hydrodynamic code presented in Section 2, we per-
formed multiple simulations of collapsing massive pre-stellar
cores. Most of the simulations were performed either to scan
the huge numerical parameter space of the setup to guarantee
significant results or to explore individual physical initial condi-
tions. An overview of the 22 simulations evaluated is presented
in Tables 2 and 3 for 1D and 2D simulations, respectively.

Aside from varying one specific parameter of the initial
condition or the numerical configuration in each simulation
series, most of the initial conditions and the physics considered
in the simulations stay the same.

Our basic initial condition is very similar to the one used by
Yorke & Sonnhalter (2002). We start from a cold (T0 = 20 K)
pre-stellar core of gas and dust. The initial dust-to-gas mass
ratio is chosen to be Mdust/Mgas = 1%. The model de-
scribes a so-called quiescent collapse scenario without tur-
bulent motion (�ur = �uθ = 0). In non-spherically sym-
metric 2D runs, the core is initially in slow rigid rotation(|�uφ|/R = Ω0 = 5 × 10−13 Hz

)
. The rotation speed of Ω0 re-

sults roughly in an equilibrium between gravity and centrifugal
force at the outer core radius rmax in the case of the lowest mass
core of Mcore = 60 M�. The outer radius of the cores is fixed
to rmax = 0.1 pc and the total mass Mcore varies in the simula-
tions from 60 M� up to 480 M�. The initial density slope drops
with r−2. The highest mass case of 480 M� with a mean density
of ρ̄ ≈ 8 × 10−18 g cm−3

(≈ 2 × 106 cm−3
)

denotes the upper
mass limit of such a pre-stellar core we would expect from ob-
servations. A brief overview of these physical initial conditions
of the massive pre-stellar cores studied is given in Table 4.
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Table 2
Overview of Spherically Symmetric Massive Pre-stellar Core Collapse Simulations

Label Dimensions Grid Cells Resolution rmin Mcore tff tend

(AU) (AU) (M�) (kyr) (kyr)

1D Convergence runs Section A.1

1D-Convergence32 1D 32 0.36 1 60 67.6 310∗∗
1D-Convergence64 1D 64 0.17 1 60 67.6 163∗∗
1D-Convergence128 see “1D-Mcore60Msol”
1D-Convergence256 1D 256 0.04 1 60 67.6 188∗

1D rmin runs Section 4.1

1D-rmin1AU 1D 99 + 128 1.0 1 60 67.6 204∗
1D-rmin5AU 1D 95 + 128 1.0 5 60 67.6 282∗∗
1D-rmin10AU 1D 90 + 128 1.0 10 60 67.6 283∗∗
1D-rmin80AU 1D 20 + 128 1.0 80 60 67.6 293∗

1D Mcore runs Section 4.2

1D-Mcore60Msol 1D 128 0.08 1 60 67.6 218∗∗
1D-Mcore120Msol 1D 128 0.08 1 120 47.8 54∗∗
1D-Mcore240Msol 1D 128 0.08 1 240 33.8 39∗∗
1D-Mcore480Msol 1D 128 0.08 1 480 23.9 10∗∗

Notes. The table is structured in blocks of topics and their corresponding sections. For each run the label, the dimension, the number of grid
cells, the resolution of the best-resolved region around the central star, the radius rmin of the central sink cell, the initial mass Mcore of the
pre-stellar core, its corresponding free-fall time tff = πr

3/2
max/

√
8GMcore, and the period tend of evolution simulated are given. A “*” in the tend

column denotes that the whole accretion phase of the star has been computed. A “**” denotes that the computation has been stopped at the
point in time when no mass is left in the computational domain.

Table 3
Overview of Axially Symmetric Massive Pre-stellar Core Collapse Simulations

Label Dimension Grid Cells Resolution rmin Mcore tff tend

(AU) (AU) (M�) (kyr) (kyr)

2D Convergence runs Section A.2

2D-Convergence 32×16 2D 32 × 16 2.69 × 1.11 10 60 67.6 62
2D-Convergence 64×4 2D 64 × 4 1.27 × 4.18 10 60 67.6 93
2D-Convergence 64×8 2D 64 × 8 1.27 × 2.09 10 60 67.6 691∗∗
2D-Convergence 64×16 see “2D-Mcore60Msol”
2D-Convergence 128×32 2D 128 × 32 0.61 × 0.51 10 60 67.6 33+

2D rmin runs Section 5.1

2D-rmin 80AU 2D 64 × 16 7.25 × 8.21 80 60 67.6 251∗
2D-rmin10AU see “2D-Mcore60Msol”
2D-rmin5AU 2D 64 × 16 0.69 × 0.52 5 60 67.6 631+

2D-rmin1AU 2D 64 × 16 0.17 × 0.11 1 60 67.6 92+

2D Mcore runs Section 5.2

2D-Mcore60Msol 2D 64 × 16 1.27 × 1.04 10 60 67.6 939∗∗
2D-Mcore120Msol 2D 64 × 16 1.27 × 1.04 10 120 47.8 489∗∗
2D-Mcore240Msol 2D 64 × 16 1.27 × 1.04 10 240 33.8 226∗∗
2D-Mcore480Msol 2D 64 × 16 1.27 × 1.04 10 480 23.9 41+

Notes. The table is structured in the same way as Table 2. Simulations, which are still running, are marked by an additional “+” in the tend

column.

Table 4
Overview of Initial Conditions

Symbol Value Quantity

T0 20 K Temperature of the pre-stellar core(
Mdust/Mgas

)
0 1% Dust-to-gas mass ratio

|�ur | 0 Radial velocity
|�uθ | 0 Polar velocity
Ω0 = |�uφ |/R 5 × 10−13 Hz Azimuthal angular velocity in two dimensions
rmax 0.1 pc Outer radius of the pre-stellar core
ρ(r) r−2 Density slope of the pre-stellar core
Mcore 60–480 M� Mass of the pre-stellar core
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Figure 5. Polynomial fits to the stellar luminosity as a function of the stellar
mass as calculated by Hosokawa & Omukai (2009). The data points represent
an evolving massive star with an accretion rate of 10−3 M� yr−1. The mass
range was split into two regimes above and below 5.5 M� (at the sharp bend)
and each part is fitted by a polynomial up to the tenth order (solid lines).

The simulations are performed on a time-independent grid
in spherical coordinates (see Section 2.1). The radially inner
boundary of the computational domain is a semi-permeable
wall toward the forming star, i.e., the gas can enter the central
sink cell, but it cannot leave. The outer radial boundary is a
semi-permeable wall as well. The mass can be pushed out of
the computational domain (by radiative forces) but no mass is
allowed to enter the computational domain. The semi-permeable
outer boundary implies the assumption that the collapsing core
is mostly isolated from its large-scale environment. This limits
the extent of the potential mass reservoir for the forming massive
star to the initially fixed mass of the pre-stellar core Mcore.

The remaining numerical parameters are determined in sev-
eral simulation series. The resolution of the computational do-
main, which is necessary to follow the radiation and fluid physics
as well as its interactions, is determined in several so-called
convergence runs, see Sections A.1 and A.2 for non-rotating
and rotating cores, respectively. The highest resolution of the
non-uniform grid is chosen around the forming massive star,
afterward the resolution decreases logarithmically in the radi-
ally outward direction. The default resolution goes down to
(Δr)min = 0.08 AU and (Δr × rΔθ )min = 1.27 AU × 1.04 AU
for the 1D and 2D simulations, respectively. The accurate size
of the sink cell is determined in parameter scans presented in
Sections 4.1 and 5.1 for non-rotating and rotating cores, respec-
tively. While we started the first 2D simulations with a radius
of the inner sink cell of rmin = 80 AU analog to the case of
“F60” in Yorke & Sonnhalter (2002), we experienced that it is
necessary to shrink the size of the sink cell down to a value
smaller than the distance from the dust sublimation front to the
forming massive star, at least from the point in time at which
the radiative force becomes a serious counterpart to the gravity.
Otherwise, a huge sink cell gives rise to an artificially high ra-
diative feedback and therefore limits the stellar mass reached in
the simulations dramatically. The default radius of the sink cell
is chosen to be rmin = 1 AU and rmin = 10 AU for the 1D and
2D simulations, respectively. In axially symmetric (2D) runs,
physical shear viscosity is used to maintain the accretion flow
through the growing circumstellar disk. Therefore, we adopted
the well-known α-parameterization model for shear viscosity of
standard disk theory (Shakura & Sunyaev 1973). We performed
several simulations with varying normalization values for the
physical α-viscosity, which yield the formation of a stable ac-

cretion disk for a range of α-values from 0.1 up to 1.0. Apart
from these runs the normalization of the viscosity was fixed to
be α = 0.3 here. A theoretical estimation of the α-values of
massive accretion disks was presented in Vaidya et al. (2009).

In previous test runs, we studied several non-radiative and ra-
diative physics. We performed isothermal and adiabatic collapse
simulations as well as gray and frequency-dependent radiation
transport with and without radiation pressure feedback from
the star or the diffuse thermal radiation field. In this paper, we
confine ourselves to presenting only the most realistic runs in-
cluding frequency-dependent radiation transport as well as full
radiative feedback.

4. SPHERICALLY SYMMETRIC ACCRETION

As mentioned in Section 1, spherically symmetric accre-
tion onto a massive star is potentially stopped by its grow-
ing radiation pressure. First, we present our results of 1D
simulations used to fix the numerical parameters of the
setup, namely, the resolution of the computational grid (see
Section A.1) and the radius of the inner sink cell (Section 4.1).
Afterwards, we analyze simulations with varying initial core
masses Mcore to determine the upper mass limit, if such a limit
exists, for our specific model (the chosen dust and stellar evo-
lution model, the configuration of the hydrodynamic solver as
well as the treatment of radiation transport). To re-perform these
1D simulations on our own instead of just referring to Larson
& Starrfield (1971), Kahn (1974), Yorke & Krügel (1977), and
Wolfire & Cassinelli (1987) allows us to directly compare the
results found for spherically symmetric accretion flows with
subsequent simulation results in higher dimensions.

4.1. Parameter Scan of the Size of the Sink Cell: The Influence
of the Dust Sublimation Front

4.1.1. Simulations

In order to limit the run time of the simulations to an adequate
amount, the formation and evolution of the central protostar
cannot be included in the computational domain. In fact, the
radially inner computational boundary defines the radius of a
so-called sink cell. The mass flux into this sink cell defines
the accretion rate onto the protostar, which is assumed to form
in the center of the pre-stellar core. Inside of this sink cell
the stellar properties such as luminosity and radius are taken
from pre-calculated stellar evolutionary tracks. We use therefore
recent results for the evolution of accreting high-mass stars
by Hosokawa & Omukai (2009). In the following, we study
the influence of the location rmin of this inner boundary on
the resulting accretion rate onto the evolving massive star. We
check this dependence in four simulations with a radius of the
inner sink cell of rmin = 1, 5, 10, and 80 AU. To decouple
the results from the dependence on resolution (see Section A.1)
the size of the grid cells was fixed to be Δr = 1 AU up to a
radius of 100 AU. So the different simulations use 99, 95, 90,
and 20 grid cells up to 100 AU, respectively. Behind this inner
region, the grid resolution decreases logarithmically throughout
the additional 128 grid cells from 100 AU up to 0.1 pc. The
initial conditions and numerical parameters of these runs are
described in Section 3 and the simulations are performed for an
initial core mass of Mcore = 60 M�. We follow the long-term
evolution of the runs for at least 200 kyr, representing 3.0 free-
fall times. The resulting accretion flow onto the forming star as
well as the deviations of the simulations from the run with the
smallest sink cell rmin = 1 AU is displayed in Figure 6.
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Figure 6. Accretion rate (upper panel) and deviations of the accretion rates
from the simulation run with the smallest sink cell radius of rmin = 1 AU (lower
panel) as a function of time for four different sizes of the spherical sink cell.

4.1.2. Conclusions

The first absorption of stellar irradiation takes place directly
behind the dust sublimation radius rsubl. If the radius of the
central sink cell rmin exceeds this dust sublimation radius, this
interaction is artificially shifted to rmin. Due to the fact that the
generalized Eddington limit is independent of the radius (the
stellar gravity and the stellar radiative flux both drop with r−2),
the shift of this first transfer of momentum from the stellar
irradiation to the dust flow should be independent of the radius
of the sink cell. Second, the absorption of stellar irradiation
heats up the region behind the dust sublimation radius. The
thermal radiative flux from this region outward slows down
the gravitationally in-falling accretion flow. In general, this
interaction depends on the radius, which defines the temperature
of the heated region, the velocity of the accretion flow, and the
opacity of the corresponding dust.

In the plot of the resulting accretion rates (Figure 6, upper
panel), only slight deviations of the run with the largest sink
cell radius rmin = 80 AU are visible during the initial and
final epochs. The other runs show identical results. The lower
panel of Figure 6 shows in more detail the deviations of the
simulations from the run with rmin = 1 AU. The simulation
runs with rmin = 10, 5, and 1 AU stay identical. In these
simulations, the dust sublimation radius, which can roughly
be estimated to 20–30 AU for a corresponding 20–30 M�
star, is included in the computational domain before the onset
of radiation pressure occurs at roughly 25 kyr. On the other
hand, the largest sink cell of rmin = 80 AU exceeds the
dust sublimation radius rsubl. The resulting accretion rate of
the corresponding run oscillates around the results from the
more precise simulations with a maximum deviation of 10%
mostly at the end of the simulation, when the radiation pressure

Figure 7. Accretion rate Ṁ∗ as a function of the actual stellar mass M∗ for four
different initial pre-stellar core masses of Mcore = 60 M� up to 480 M�. The
spherically symmetric accretion models yield an upper mass limit of the final
star of M1D∗ < 40 M�.

starts to revert the accretion flow throughout the whole domain.
Due to the fact that the deviations are oscillating and the
fact that the strongest deviations occur at the end of the
simulation where the accretion rate is already an order of
magnitude lower than at the beginning, the four simulations
yield the same final mass of the protostar. Subsequent 1D
simulations presented make use of a radius of the central sink cell
of rmin = 1 AU.

4.2. Parameter Scan of the Initial Pre-stellar Core Mass: The
Upper Mass Limit of Spherically Symmetric Accretion

4.2.1. Simulations

The simulations presented so far were performed to fix
the remaining free numerical parameters, namely, the grid
resolution and the size of the central sink cell. We now study
the collapse of massive pre-stellar cores for four different initial
core masses Mcore ranging from Mcore = 60 M� up to 480 M�.
The initial conditions and numerical parameters for these runs
are described in Section 3. The simulations are performed with
an inner boundary of the computational domain of rmin = 1 AU
and 128 grid cells with logarithmically increasing resolution
toward the center. The size of the innermost grid cell of the
computational domain is (Δr)min = 0.08 AU. We follow the
evolution of the system until no mass is left in the computational
domain. Part of this mass is accreted onto the central massive
star and part is expelled over the outer boundary by radiative
forces. The resulting accretion histories are displayed in Figure 7
as a function of the actual stellar mass.

4.2.2. Conclusions

The mass and the luminosity of the forming massive star grow
with time. The radiation pressure of the direct stellar irradiation
as well as from the thermal infrared dust emission increases
and ultimately becomes stronger than gravity. Therefore, the
accretion rate drops down and the massive star has grown to its
final mass.

The individual force densities as a function of the radius
through the spherically symmetric pre-stellar core are displayed
at a snapshot in time, where the radiative force starts to trigger
the stopping of the in-fall motion in Figure 8. These forces are
later on compared with the corresponding forces of the disk
accretion models.
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Figure 8. Snapshot of radial force densities (lower panel) and the density and
temperature profile (upper panel) in the innermost core region taken from
the collapse simulation of an Mcore = 120 M� pre-stellar core at 20 kyr
corresponding to a protostellar mass of about M∗ = 25 M�. Due to the superior
radiative force, the spherically symmetric accretion models yield an upper mass
limit of the final star of M1D∗ < 40 M�.

The final star does not reach a mass higher than 40 M�
in any of the simulations. This limit is in good agreement
with previous research studies. It lies in the allowed range
of 25–60 M� determined by Larson & Starrfield (1971). Kahn
(1974) predicted in his analytical study the formation of a 40 M�
star and Yorke & Krügel (1977) formed a 36 M� star in their
radiation hydrodynamic simulation of a 150 M� collapsing core.

The oscillations of the accretion rate during the stopping
of the in-fall motion are due to a negative feedback effect of
the accretion luminosity: by increasing the initial mass of the
pre-stellar core from 60 M� up to 480 M�, the amplitude of the
accretion rate and therefore the accretion luminosity increases as
well. Due to the resulting stronger radiative force, the increase of
accretion luminosity leads to a de-acceleration of the accretion
flow, which results in a reduction of the corresponding accretion
luminosity. This negative feedback yields a highly episodic
accretion history. The effect is stronger in cases, where the ratio
of the accretion luminosity to the stellar luminosity is high, i.e.,
the effect is stronger for more massive cores. Such an oscillating
phase was also previously detected in the simulations by Yorke
& Krügel (1977).

The fact that the final mass of the star in the most massive case
Mcore = 480 M� is lower (M∗ ≈ 31 M�) than for the cores that
initially had less mass, should be taken with care: in simulations
with such high oscillations, the influence of the underlying
stellar evolution model increases strongly. To analyze the details
of this time-dependent interaction of the stellar evolution and the
accretion flow, a self-consistent treatment of the protostellar’s
evolution and its environment should be considered.

5. DISK ACCRETION

The most massive stars known cannot be formed by spher-
ically symmetric accretion. As shown in the last section, the
radiative forces in a spherically symmetric envelope lead to a
cutoff of the accretion phase. The high luminosity of a massive
star heats the region in its vicinity to such a high temperature
that the resulting thermal radiation pressure overcomes the grav-
itational force. The radiation pressure stops and finally reverses
the accretion flow. Besides this theoretical issue, observations
indicate the presence of angular momentum in all epochs of
star formation, starting with the rotation of pre-stellar cores and
finally resulting in rotating flattened circumstellar structures.
Leaving perfectly spherical symmetry will thereby potentially
help to overcome the radiation pressure problem. First, the pres-
ence of higher densities in the forming disk region results in a
thinner shell, where the first absorption of stellar photons takes
place. This enables an accretion flow to break through this re-
gion of direct stellar irradiation feedback more easily. Second,
the feedback by radiation from dust grains, which actually stops
the accretion in the spherically symmetric case, will be strongly
reduced because the majority of the radiative flux from the irra-
diated inner rim of the disk will escape in the vertical direction
through the optically thin disk atmosphere and therefore does
not interact with the radially inward-streaming accretion flow.
The different kinds of radiative feedback in spherical symmetry
as well as in an axially symmetric disk geometry are illustrated
in the final discussion (Section 6).

Analogous to the discussion of the spherically symmetric sim-
ulations, we present in the following the results of axially and
midplane symmetric simulations of the collapse of rotating mas-
sive pre-stellar cores. Before being able to scan the parameter
space of different initial core masses (Section 5.2), we determine
the required resolution in convergence runs (Section A.2) and
fix the radius rmin of the central sink cell in various simulations
(Section 5.1).

5.1. Parameter Scan of the Size of the Sink Cell: The Influence
of the Dust Sublimation Front

5.1.1. Simulations

In the following, we study the influence of the radius rmin
of the inner sink cell, which equals the inner computational
boundary, on the resulting accretion rate onto the evolving
massive star. We check this dependence in four simulations
with a radius of the inner sink cell of rmin = 1, 5, 10, and 80 AU.
The initial conditions and numerical parameters of these runs
are described in Section 3 and the simulations are performed for
an initial core mass of Mcore = 60 M�. We follow the long-term
evolution of the runs for at least 92 kyr. The resulting accretion
rate onto the forming star as well as the mass growth of the
central star is displayed in Figure 9.

5.1.2. Conclusions

In the spherically symmetric models, we conclude that the
numerical results do not depend on the radius rmin of the central
sink cell unless it is smaller than the dust sublimation radius rsubl
from the point in time at which the radiative force overcomes
gravity. These results cannot easily be transferred to the axially
symmetric disk configuration. Including centrifugal forces,
which compensate the gravity in the disk region, the chosen
location rmin of the inner boundary of the computational domain
influences the resulting accretion rate in two distinguishable
effects.
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Figure 9. Stellar mass M∗ (upper panel) and accretion rate Ṁ∗ (lower panel) as
a function of time t for different radii rmin of the central sink cell in the collapse
simulation of a rotating 60 M� pre-stellar core.

Due to the fact that the circumstellar disk is growing with
time from the inside outward, a smaller sink cell leads to an
earlier onset of the disk formation phase during the simulation.
In other words, a fluid package with an initial position at (ri, θi)
and an initial rotation of Ωi holds a centrifugal radius of rcent =

Ω2
i r

4
i

GM(ri )
sin2(θi) with the included mass M(ri), see Equation (12).

If this centrifugal radius is smaller than the sink cell radius rmin,
the fluid package is accreted onto the forming star during the
so-called free-fall epoch at the beginning of the simulation. This
effect is associated with the gas physics (hydrodynamics) of the
pre-stellar core because the gas represents 99% of the mass of
the pre-stellar core. A second important effect depending on the
chosen sink cell radius is related to the dust and therefore to
the radiation physics. The region in the vicinity of the forming
massive star will be heated up to temperatures beyond the dust
sublimation temperature. Therefore, a gap is formed between
the central star and the dust disk. Under the assumption that
the absorption by gas in this gap is much smaller than the
absorption by dust grains behind the dust sublimation front
the inner rim of the dust disk determines the region of the
first stellar radiative impact onto the accretion flow. Also the
most important radiative feedback due to thermal re-emission by
dust grains sets in directly behind this irradiated heated region.
Contrary to the spherically symmetric case, the high-density
disk region bypasses most of the re-emitted radiation into the
vertical direction, i.e., the total radiation field is composed of the
isotropic stellar irradiation and a highly anisotropic (secondary)
thermal radiation field.

Figure 9 illustrates clearly both, the mass and the radiative
effect, related to an artificial inner cutoff of the gas and the dust

disk, respectively: as expected, the duration of the so-called
free-fall phase shortens with the radius rmin of the sink cell. This
behavior can fortunately be estimated analytically given the sink
cell radius and the initial conditions of the pre-stellar core to
account for the overestimation of the final mass of the forming
star, if necessary. Moreover, this effect of the artificial inner rim
of the gas disk results on the one hand in an overestimation
of the final mass of the central star by approximately 1 M�
or below (upper panel of Figure 9), but on the other hand
influences the proceeding radiation hydrodynamic interactions
in its environment only marginally (lower panel of Figure 9).
The corresponding accretion rates after the disk formation are
not influenced at all. This result is quite reasonable keeping in
mind that the balance of radiative and gravitational forces can be
described in first order by the luminosity to mass ratio Ltot/M∗
of the central massive star, which only changes marginally with
another choice of the size of the central sink cell.

But the radiative impact due to the artificial cutoff of the
inner dust disk regime for sink cell radii larger than the dust
sublimation front has dramatic effects. In the case of rmin =
80 AU, the artificial shift of the region of the dust radiation
interactions terminates the short disk accretion phase abruptly,
leading to a completely wrong evolution of the central star, the
disk as well as the large-scale environment. The reason for this
dramatic change in the radiation physics is that the lower density
region of the circumstellar disk at 80 AU is (in contrast to the
real inner rim of the dust disk at roughly 20 AU) not opaque
enough to generate a strong anisotropy of the thermal radiation
field. Therefore, the strong isotropic part of the thermal radiation
field is able to stop the accretion analogous to the spherically
symmetric flow calculations.

Due to the importance of this inner core region for the
associated interaction of the radiation with the accretion flow it
seems to be unavoidable to include the whole dust disk down to
its inner rim in the computational domain (cf. Figure 10). This
defines an upper limit of the radius rmin of the central sink cell,
which has to be smaller than the dust sublimation radius rsubl in
the midplane from that point in time at which the radiative force
has grown to a competitive magnitude compared to the viscous
force driving the accretion flow. Subsequent simulations meet
this concern by using an adequate central sink cell radius of
rmin = 10 AU. Otherwise, for an inner sink cell radius rmin larger
than the dust sublimation radius rsubl, the region of radiative
feedback is artificially shifted to higher radii including a strong
decrease in density, opacity, and gravity. The resulting strong
heating of the disk region behind the radius rmin > rsubl, which
“realistically” would be shielded from the stellar irradiation
by the inner parts of the disk, leads to a diminishment of the
shielding/shadowing property of the massive accretion disk. In
case, the radiation field retained therefore its isotropic character
in major parts, the radiation pressure stops the emerging disk
accretion phase, similar to the spherically symmetric case.

This dependence of the radiation pressure on the radius of the
sink cell explains also the abrupt end of the accretion phase in
the simulations by Yorke & Sonnhalter (2002). They presented
simulations of collapsing pre-stellar cores of Mcore = 30 M�,
60 M�, and 120 M�. The radius of their inner sink cell was
chosen proportional to the initial mass of the core to be 40, 80,
and 160 AU, respectively. As shown in this parameter scan (cf.
Figure 9), such huge sink cells lead to an artificial cutoff of the
dust disk and result therefore in unphysically strong radiative
feedback. Therefore, we are definitely sure that this also yields
the abrupt and early end of the accretion phase in the simulations
by Yorke & Sonnhalter (2002).
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Figure 10. Resolving the dust sublimation front. The image shows a snapshot at 100 kyr after start of the collapse of a 120 M� pre-stellar core. Color: gas density
from 10−20 up to 2 × 10−12 g cm−3 in the logarithmic scale. Contour lines: dust-to-gas mass ratio from 0 up to 1% in the linear scale. The zoom-in illustrates the fact
that the dust sublimation front is resolved smoothly over several (here roughly eight) grid cells in the radial direction.

(A color version of this figure is available in the online journal.)

Contrary to our conclusion, Krumholz et al. (2009) stated
that the much longer accretion phases in their own simulations
compared to Yorke & Sonnhalter (2002) are a result of non-
axially symmetric modes in the outflow region. The physical
argument in that case is that their simulations show a so-
called 3D radiative Rayleigh–Taylor instability in the radiation
pressure-driven outflow, which results in further mass accretion
onto the circumstellar disk from the bipolar direction instead of
a steady outflow feature. In axially symmetric simulations, the
feeding of the disk would therefore not be possible. Our axially
symmetric collapse simulations, presented in the following
section, show a stable radiation pressure driven outflow and
the forming circumstellar disk gains enough mass from the huge
mass reservoir of the envelope to maintain its shielding property
over several free-fall times, in fact over a longer period than ever
simulated in previous research studies.

5.2. Parameter Scan of the Initial Pre-stellar Core Mass:
Breaking Through the Upper Mass Limit of

Spherically Symmetric Accretion

5.2.1. Simulations

The spherically symmetric (1D) collapse simulations of mas-
sive pre-stellar cores yield a maximum stellar mass of less than
40 M� independent of the initial core mass Mcore � 60 M� due
to radiative feedback. We attack this radiation pressure barrier
in 2D axially and midplane symmetric circumstellar disk ge-
ometry now. The implications of this change of geometries are
illustrated at full length in the final discussion in Section 6. We
performed four simulations with the default initial conditions
described in Section 3 and the fixed numerical parameters pre-
sented in Sections A.2 and 5.1, namely, a maximum resolution
of 1.27 AU × 1.04 AU, and an inner sink cell radius of 10 AU.
The different initial core masses of Mcore = 60 M�, 120 M�,
240 M�, and 480 M� are chosen analogous to the scan of the ini-
tial core mass parameter in the spherically symmetric case. The
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Figure 11. Accretion rate Ṁ∗ as a function of the actual stellar mass M∗ for four
different initial core masses Mcore = 60 M�, 120 M�, 240 M�, and 480 M�.
Also the periods of accretion are mentioned for each run. The vertical line marks
the upper mass limit found in the spherically symmetric accretion models. The
collapse models of slowly rotating pre-stellar cores clearly break through this
upper mass limit of the final star of M1D∗ < 40 M�.

resulting accretion histories as a function of the actual stellar
mass are displayed in Figure 11.

5.2.2. Conclusions

As expected, the lowest mass case of Mcore = 60 M� results
finally in a less massive central star than the corresponding
run in spherical symmetry (without rotation) simply due to the
fact that the additional angular momentum results in centrifugal
forces, which counteracts the accretion flow driven by gravity
and viscosity. In the face of these additional centrifugal forces,
for higher mass pre-stellar cores the slowed down accretion flux
breaks easily through the upper mass limit of the final star of
M1D

∗ < 40 M� found in the spherically symmetric accretion
models.

The reason for that breakthrough can be displayed by a closer
look at the driving force densities in the evolved pre-stellar
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Figure 12. Total force density |ftot(r)| (upper panel) as well as density ρ(r)
and radial velocity ur (r) (lower panel) as a function of radius r through the
disk’s midplane. The snapshot was taken at 60 kyr after start of the simulation,
corresponding to a central stellar mass of roughly 40 M�. The individual force
densities along this line of sight through the total and the inner core region are
displayed in Figures 13 and 14.

Figure 13. Gravity, centrifugal, and thermal pressure force as a func-
tion of radius through the disk’s midplane. The snapshot was taken at
60 kyr after start of the simulation, corresponding to a central stellar mass
of roughly 40 M�. The radiative and viscous forces are orders of magnitude
smaller than the illustrated ones, but become important in the inner disk region,
where the stronger forces are in equilibrium. The radiative and viscous force
densities along this line of sight through the inner core region are displayed in
Figure 14.

core, plotted in Figures 12–17. All figures represent a snap-
shot of the Mcore = 120 M� case at 60 kyr after start of the
simulation. At this point in time, the actual mass of the cen-
tral massive star is roughly 40 M�, representing the spheri-
cally symmetric upper mass limit found in previous simulations
(Section 4.2). In contrast to the spherically symmetric mod-
els, the geometry of the protostellar environment can now be
divided into a very dense circumstellar disk and the lower den-
sity envelope. We visualize as exemplary the actual density,
velocity, and the acting forces in the radial direction for both

Figure 14. Viscous and radiative force density of the inner core region as a
function of radius through the disk’s midplane. The snapshot was taken at
60 kyr after start of the simulation corresponding to a central stellar mass of
roughly 40 M�.

Figure 15. Total force density |ftot(r)| (upper panel) as well as density ρ(r) and
radial velocity ur (r) (lower panel) as a function of radius r at 30◦ above the
disk’s midplane. The snapshot was taken at 60 kyr after start of the simulation,
corresponding to a central stellar mass of roughly 40 M�. The individual force
densities along this line of sight through the total and inner core regions are
displayed in Figures 16 and 17.

regimes, in Figures 12–14 for the midplane of the accretion disk
and Figures 15–17 for a polar angle of 30◦ above the midplane.
In the midplane, the gravity and centrifugal force are 1–2 orders
of magnitude higher than the thermal pressure and up to 3 or-
ders of magnitude higher than the radiative and viscous force.
The upper panel of Figure 12 shows three individual regions
of the midplane layer, in between the sign of the total force
density changes. The gravity dominates the individual forces
for the outer core regions (above 3000 AU) leading to a steady
accretion flow onto the inner core region (Figures 12 and 13).
In the very inner part of the core around the massive star (below
200 AU), the gravity is balanced by the centrifugal force and in
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Figure 16. Gravity, centrifugal, thermal pressure, and radiative forces as a
function of radius at 30◦ above the disk’s midplane. The snapshot was taken at
60 kyr after start of the simulation, corresponding to a central stellar mass of
roughly 40 M�. The individual force densities along this line of sight through
the inner core region are displayed in Figure 17.

small part by the thermal pressure (Figure 13). In this region,
which we will refer to as the disk region hereafter, the shear
viscosity yields a quasi-stationary accretion flow through the
disk, which clearly exceeds the radiative force (Figure 14). In
between this disk region (<200 AU) and the global in-fall re-
gion (>3000 AU), the mass flux describes transient oscillations,
because gravity, centrifugal forces, and thermal pressure are not
in equilibrium yet, as is the case for the mass finally arriving in
the disk region. Although the total force density, displayed in
the upper panel of Figure 12, is directed in the outward direc-
tion between 200 and 3000 AU, the mass in this region is still
in an inward motion (cf. Figure 12, lower panel), i.e., the mass
flow through the pre-stellar core is feeding the circumstellar ac-
cretion disk. The viscous force in the accretion disk is able to
drive a steady accretion flow toward the evolving massive star
of 40 M� because the radiative force is 1–2 orders of magnitude
lower in this dense disk region than in the low density enve-
lope (cp. Figures 14 and 17). Observations of such a large-scale
flattened structure with a potentially embedded small-scale ac-
cretion disk are i.e., described in Fallscheer et al. (2009) and
Beuther et al. (2009).

At a polar angle of 30◦ above the midplane, this strong
radiative force already accelerates the remnant mass in the
radially outward direction through most of the entire pre-stellar
core (Figure 16). Only at the outer rim of the core is the previous
in-fall motion still visible. This distribution of the individual
force densities confirms in more detail the expected result of the
anisotropy of the thermal radiation field. Most of the radiative
flux from the irradiated inner rim of the disk is bypassed in
the vertical direction through the optically thin atmosphere
of the circumstellar disk. Meanwhile, the accretion flow is
reduced compared to the 1D gravitational in-fall to a steady
stream driven by the viscous properties of the accretion disk. In
the envelope region of the pre-stellar core, the radiative force
reverts the in-fall motion and depletes the stellar surrounding
similar to the spherically symmetric accretion models (cf.
the corresponding individual force distributions in Figures 8
and 15).

In these axially and midplane symmetric disk accretion
models, no upper mass limit of the final star is detected so
far, but the star formation efficiency declines for higher mass
cores. The proceeding depletion of the envelope by radiative
forces finally leads to a decrease of the density in the midplane

Figure 17. Gravity, centrifugal, thermal pressure, radiative, and viscous force
density of the inner core region as a function of radius at 30◦ above the
disk’s midplane. The snapshot was taken at 60 kyr after start of the simulation
corresponding to a central stellar mass of roughly 40 M�.

and the disk loses its shielding property. Without this shielding
the radiation pressure starts to accelerate the remnant material
in the outward direction.

6. DISCUSSION

6.1. Radiation Pressure Feedback in a Nutshell

Since the isotropic and anisotropic features of the spherical
and disk accretion scenario at the dust sublimation front are of
such a great importance in our simulation results, we illustrate
these key attributes in more detail: in this research study, we
investigated the influence of the stellar environment onto the
radiation pressure problem in the formation of massive stars.
We studied the accretion flow onto a high-mass star in a mono-
lithic pre-stellar core collapse picture, as recommended by Whit-
ney (2005) and McKee & Ostriker (2007). Under this assump-
tion, the theoretical description of the accretion process onto a
massive star has to deal with the interaction between the exerted
radiation by the forming star with the accretion flow of gas and
dust (Shu et al. 1987). In a perfectly spherically symmetric col-
lapse, this interaction potentially stops the accretion onto the
star entirely. In the static limit, radiation pressure overcomes
gravity at the so-called generalized Eddington barrier

L∗
M∗

= 4πGc

κ∗
, (28)

where L∗, M∗, and κ∗ denote the stellar luminosity, the stellar
mass, and the dust opacity, respectively, G is the gravitational
constant and c is the speed of light. But the collapse of a pre-
stellar core is far from being a static problem. The momentum
transfer from the absorbed photons first has to slow down
the in-falling envelope. For simplification purposes, we can
divide the radiation pressure feedback into two components, as
illustrated in Figure 18. The first exchange of momentum takes
place when the irradiation from the massive star is absorbed
by the dust grains of the surroundings, i.e., behind the dust
sublimation radius. The strongest force will thereby be produced
by photons with shorter wavelengths because they have a higher
absorption probability and are more energetic. We will call
this first interaction “UV feedback” abbreviated, although the
frequency dependence of the broad stellar black body spectrum
is clearly not negligible. Afterward, these heated regions emit
most of the photons at the dust temperature, yielding a much
longer wavelength and a much longer mean free path than the
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Figure 18. Schematic view of the radiative forces onto the accretion flow in spherical symmetry. The radiative feedback is divided into direct stellar irradiation and
secondary re-emitted photons by dust grains.

(A color version of this figure is available in the online journal.)

direct stellar light. The interaction of this radiation with the
enclosed gas and dust is therefore referred to as “IR feedback.”
Our spherically symmetric collapse simulations confirm the
outcome of previous studies that it is essentially the IR feedback
that stops the accretion flow onto the forming star in spherical
symmetry. Although each IR photon transfers less momentum
to the dust than the highly energetic stellar UV photons, the
thermal dust emission acts onto the accretion flow on a much
larger volume than the spatially confined absorption region
of the stellar irradiation. Additionally the optical depth of
the envelope decreases toward longer wavelength, so the IR
feedback counteracts the accretion flow in the outer core regions
yielding less gravity. Different approaches to overcome this
barrier for spherically symmetric accretion flows onto massive
stars were considered in the past. The generalized Eddington
barrier depends only on the stellar evolution (L∗/M∗) and on
the dust properties (κ∗). Wolfire & Cassinelli (1987) studied the
necessary change of dust properties to enable further accretion,
but the restrictions they derived seem to be unrealistic.

Without a doubt, star formation is rarely a perfectly spher-
ically symmetric problem. Initial angular momentum of the
collapsing pre-stellar core leads to the formation of a circum-
stellar disk as well as polar cavities. Compared to the case of
spherically symmetric accretion, the disk geometry changes the
radiation pressure feedback dramatically, see Figure 19. Go-
ing from a spherically symmetric in-fall to an axially sym-
metric disk geometry can help to overcome both—the UV
and the IR—radiation pressure feedback: developing radia-
tion hydrodynamical (Klahr & Bodenheimer 2003), magneto-
rotational (Balbus & Hawley 1991; Hawley & Balbus 1991;
Balbus 2003), and self-gravitating instabilities (Yang et al. 1991;
Laughlin & Bodenheimer 1994; Bodenheimer 1995) in the ac-
cretion disk will transfer angular momentum to outer radii al-
lowing a steady mass accretion radially inward. The additional
ram pressure in the radiatively shielded parts of the disk will
possibly push the mass over the thin shell of the UV feedback

(Nakano 1989). Second, and most important, the irradiated and
therefore heated regions of the disk will mainly cool in the
vertical direction through the optically thin disk’s atmosphere,
strongly restraining the IR radiation pressure in the radial di-
rection. If the latter process occurs at the innermost part of the
disk so that the radiation can escape directly through the bipolar
cavity, this effect is also known as the so-called flashlight effect
(Yorke & Sonnhalter 2002; Krumholz et al. 2005).

The interaction of the radiation with the accretion flow is very
sensitive to the numerical treatment of radiation transport. The
FLD approximation, which is a standard technique in modern
radiation hydrodynamic codes for astrophysical fluid flows, fails
to compute the correct flux between the first transition region
from the dust depleted zone around the massive star and the
optically thick disk leading to an incorrect temperature distribu-
tion in the irradiated regions (see, e.g., Yorke & Krügel 1977;
Boley et al. 2007). Also simplifying the stellar black body spec-
trum by using frequency-averaged Planck mean opacities leads
to a thinner shell of the direct stellar irradiation feedback and
a stronger heating of the corresponding dust, which afterward
yields a higher IR feedback. Hence, accounting for the frequency
dependence of the stellar spectrum seems to be a crucial point.

The most violent interaction of the stellar irradiation with
the accretion flow takes place at and directly behind the first
absorption peak. The location of the first absorption layer is
represented by the dust sublimation front, where the local dust
temperature falls below the evaporation temperature of the dust
grains. A systematic study of the radiation pressure feedback
on the formation of massive stars therefore implies the need
to resolve the ongoing radiation and accretion physics down
to the dust sublimation front. A formation of massive stars
by breaking through the ionization boundary into regions of
sublimated dust grains was studied for spherically symmetric
accretion flows (Keto 2003) as well as for 2D effects in the so-
called small radius limit (Jijina & Adams 1996). Aside from
the important contribution of the proceeding physics at the
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Figure 19. Schematic view of the “UV”- and “IR”-component of the radiation pressure acting in an axially symmetric circumstellar disk geometry.

(A color version of this figure is available in the online journal.)

Table 5
Overview of Multi-dimensional Radiation Hydrodynamic Simulations of Massive Star Formation

Authors Mcore tend M∗ SFE
(M�) (kyr) (M�) (%)

30 25 31.6 · · ·
Yorke & Sonnhalter (2002) 60 45 33.6 · · ·

120 70 42.9 · · ·
100 (A) 20+ 5.4 (+ 3.4) >5.4

Krumholz et al. (2007) 100 (B) 20+ 8.9 (+ 2.4) >8.9
200 20+ 8.6 (+ 6) >8.6

Krumholz et al. (2009) 100 75+ 41.5 + 29.2 (+ 28.3) >70.7

60 939 28.2 47.0
120 489 56.5 47.1

This study 240 226 92.6 38.5
480 41+ 137.2 (+ 67.8) >28.5 but <42.7

Notes. The columns from left to right state the authors, the initial pre-stellar core mass, the evolutionary time simulated, the final star mass, as
well as the corresponding star formation efficiency. A “+” in the tend column means that the accretion phase is not simulated until the end yet.
In the case of the simulation by Krumholz, only the formation of the most massive stars are considered here; all other stars formed have masses
below 1 M�. In the case of Krumholz et al. (2007), the “(A)” and “(B)” in the Mcore column mark the usage of different perturbation fields of
the initial state (same labels as in the original paper) and the M∗ column gives additionally the remnant disk mass around the primary star. In
the case of Krumholz et al. (2009) and the 480 M� case of our own study, the M∗ column gives additionally the remnant disk plus envelope
mass. In the case of Yorke & Sonnhalter (2002) only the simulations with frequency-dependent radiation transport are considered.

dust sublimation front, no previous non-spherically symmetric
numerical research has been done so far, presumably due to
resolution issues.

6.2. Comparison to Previous Numerical Research in the Field

In our simulations, the star in the center of the accretion
disk grows far beyond the upper mass limit found in the case
of spherical accretion. Indeed, the final massive stars are the
most massive stars ever formed in a multi-dimensional radiation
hydrodynamic simulation so far. The quantitative final results
as well as a comparison to previous multi-dimensional radiation
hydrodynamic studies are presented in Table 5.

The research studies clearly differ in the evolutionary time
simulated. We improved this by roughly an order of magnitude.

The 20 kyr and 75 kyr of evolution in Krumholz et al. (2007,
2009) represent approximately one-third and slightly more than
1 free-fall time of the pre-stellar core, respectively. Despite the
frequency-dependent radiation transport and the high resolution
down to 1.27 AU in our simulations, we are able to follow the
evolution of the accreting system up to 14, 10, 7, and 2 free-
fall times for an initial core mass of 60 M�, 120 M�, 240 M�,
and 480 M�, respectively, including the whole stellar accretion
phase. To state this clearly, this is only possible due to our self-
restriction to axial symmetry in these runs. In the simulations by
Krumholz, further accretion seems to be the natural continuation
of the runs. Our simulation series of the disk accretion scenario
with varying initial core masses shows a decrease of the star
formation efficiency toward higher mass cores as a result of the
growing radiation pressure feedback.



1572 KUIPER ET AL. Vol. 722

Figure 20. Evolution of mass flows over the inner and outer computational
boundary. Solid line: mass inside the computational domain. Dashed line: mass
of the forming massive star in the center. Dot-dashed line: mass loss due to the
radiation pressure in the radially outward direction.

Simultaneously to the bypass of the thermal radiation by
the massive accretion disk, a stable wide-angle bipolar outflow
with velocities of the order of 100 km s−1 is launched by
the radiation pressure. In these axially symmetric simulations,
we did not detect any evidence for a radiative instability of
these outflow regions, such as observed in the simulations by
Krumholz et al. (2009). Following the explanatory notes in
Krumholz et al. (2009), this is due to the fact that this instability
requires non-axial symmetric modes to occur. A detailed study
of this regime seems to be necessary to clearly understand the
underlying physics of this requirement. On the other hand, our
simulations show a strong release of radiation pressure in the
bipolar direction, growing in angle with time, which fits to
the observed broadening of outflows in massive star-forming
regions (Beuther & Shepherd 2005). But to state this clearly, we
are sure that a complete description of the jet or outflow physics
cannot be done without taking care of the dominant magnetic
field effects.

Figure 20 shows the time-dependent fractions of masses,
divided into the mass inside the computational domain, the mass
of the forming star (from the flux over the inner boundary), and
the mass loss by the radiation pressure driven outflow (from the
flux over the outer boundary).

The different epochs of the collapse of the 120 M� pre-
stellar core are illustrated in Figure 21. The subfigures display
the initial condition, the disk formation and evolution, the
outflow launching, and the end of the accretion phase in several
snapshots of the density structure. The corresponding animation
is available in the online version of the journal.

6.3. Limitations of Our Approach

A minor flaw in our studies of the radiation hydrodynamics
around the dust sublimation front is the usage of a simple
constant gas opacity of κgas = 0.01 cm2 g−1 for the completely
evaporated regions around the forming star. In other words,
the neighborhood of the star remains optically thin for the
stellar irradiation up to the dust sublimation front. From our
results of the parameter scan of the inner sink cell radius, we
conclude that the prior absorption of the stellar irradiation in
dust-free, but potentially optically thick regions, would even
enhance the crucial anisotropy of the radiation field detected
in our simulations. In this sense, the ignorance of the detailed

optical properties of the gas phase does not imply any loss of
generality.

The usage of a central sink cell of a specific radius implies
further assumptions, e.g., we assume that the mass flow into the
central sink cell is accreted by the central star. If, e.g., the mass
flow is transferred into an outflow or jet in this inner region near
the stellar surface, the stellar growth would be decreased and the
final masses of the stars given here represent upper mass limits.

Due to the fact that higher accretion rates lead first to a
delay of the star’s approach to the main sequence and second
to a higher ratio of accretion luminosity to stellar luminosity
(which increases the importance of the correct knowledge
of the stellar radius), the details of the treatment of stellar
evolution become important especially in the case of the highest
mass cores studied. An even more realistic approach than the
usage of tabulated tracks could be achieved by including a
stellar evolution code such as Hosokawa & Omukai (2009) to
calculate the ongoing stellar physics in the sink cell consistently
in time.

To mimic the effect of angular momentum transport by
evolving instabilities in the accretion disk, we made use of the
α-viscosity model by Shakura & Sunyaev (1973). Nevertheless,
all our code development (radiation transport and self-gravity)
and model setup are already in 3D formulation. Hence, we
started to expand our simulations into full three dimension. First,
this will allow us to compute the angular momentum transport
(by gravitational torques) consistently with the formation and
evolution of the accretion disk. Second, although we will not
study the fragmentation of the outer core regions, the stability
or potential fragmentation of the forming massive circumstellar
disk can be addressed.

7. SUMMARY

We performed high-resolution radiation hydrodynamic sim-
ulations of monolithic pre-stellar core collapses including
frequency-dependent radiative feedback. A broad parameter
space of various numerical configurations and initial conditions
was scanned. The dust sublimation front in the vicinity of the
forming star could be resolved down to 1.27 AU. The evolu-
tion of the system was computed over its whole accretion phase
of several 105 yr. The usage of frequency-dependent ray trac-
ing in our newly developed radiation module denotes the most
realistic radiation transport method used in multi-dimensional
hydrodynamic simulations of massive star formation by now.
The broad parameter studies, especially regarding the size of
the sink cell and the initial core mass, reveal new insights of the
radiative feedback onto the accretion flow during the formation
of a massive star.

In the case of spherically symmetric accretion flows, we
confirm the results of previous research studies (Larson &
Starrfield 1971; Kahn 1974; Yorke & Krügel 1977; Wolfire
& Cassinelli 1987) that the thermal radiation pressure by re-
emitted photons behind the dust sublimation front overcomes
gravity, stops the accretion flow, and finally reverts the in-
falling envelope. The upper mass limit of spherically symmetric
accretion for our specific dust (Laor & Draine 1993) and stellar
evolution model (Hosokawa & Omukai 2009) constrains the
final stellar mass to be less than 40 M�.

In the case of disk accretion, the thermal radiation field
generates a strong anisotropic feature, similar to the flashlight
effect, which focus lies on the escape of radiation through
optically thin cavities. We found that it is strictly necessary
to include the dust sublimation front in the computational



No. 2, 2010 CIRCUMVENTING THE RADIATION PRESSURE BARRIER VIA DISK ACCRETION 1573

(a) Color scale of the gas density in logarithmic scale from 10−19 up to 10−15 g cm−3.

(b) 0 kyr (c) 30 kyr

(d) 40 kyr (e) 50 kyr

(f) 200 kyr (g) 400 kyr

(h) 450 kyr (i) 460 kyr

(j) 470 kyr (k) 480 kyr

Figure 21. Simulation snapshots from a collapse of a 120 M� pre-stellar core. All images show the same scale of the whole pre-stellar core with a diameter of 0.2 pc.

(An animation and a color version of this figure are available in the online journal)
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domain to reveal the persistent anisotropy during the long-term
evolution of the accretion disk. This requirement as well as a
steady feeding of the accretion disk from the outer core regions
maintains the anisotropic structure of the thermal radiation field.
The short accretion phases of the disks in the simulations by
Yorke & Sonnhalter (2002) are a result of the fact that they did
not include the dust sublimation front in their simulations, as
clearly shown in our result of the parameter scan of the size of
the central sink cell (see Section 5.1). Additional feeding of the
disk by unstable outflow regions, as stated in Krumholz et al.
(2009), would enhance this anisotropy but is not necessary. As
a consequence, we conclude that the radiation pressure problem
in the formation of massive stars can be reduced to the question
if the non-spherically symmetric stellar environment is dense or
opaque enough to generate a strong anisotropy of the thermal
radiation field.

These mechanisms allow the central star to increase its mass
far beyond the upper mass limit found in the case of spherical
accretion flows. For an initial mass of the pre-stellar host core
of 60 M�, 120 M�, 240 M�, and 480 M� the masses of the
final stars formed in our simulations of the disk accretion
scenario add up to 28.2 M�, 56.5 M�, 92.6 M�, and at least
137.2 M�, respectively. Indeed, the final massive stars are the
most massive stars ever formed in a multi-dimensional radiation
hydrodynamic simulation so far.
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APPENDIX

PARAMETER SCANS OF THE RESOLUTION

Numerical hydrodynamic simulations involve a discretization
of the underlying equations of hydrodynamics given in contin-
uous space, cf. Equations (2)–(4). This causes a discretization
error, which in general vanishes for infinitely high resolution of
the numerical solver method. To compute a specific quantity,
such as the accretion history, with a specific accuracy therefore
needs a specific resolution, which is necessary to damp the dis-
cretization errors down to the requested accuracy. In this way,
it is possible to guarantee the achievement of a converged re-
sult. Although this procedure is a must in numerical research
to achieve reliable results, the overhead of cpu time needed for
convergence runs inhibits their realization in most present-day
astronomical simulations, especially in multi-dimensional radi-
ation hydrodynamics, which are performed almost at the upper
limit of the computational power of the available clusters. To

Figure 22. Stellar mass M∗ as a function of time t for four different resolutions
of the spherically symmetric pre-stellar core collapse simulations. The number
of grid cells Nr varies from 32 to 256, corresponding to a size of the smallest
grid cell of (Δr)min = 0.36–0.04 AU, respectively.

fix the number of grid cells, which are necessary for a correct
representation of the radiation fluid interactions, we perform
several simulations with varying resolution. Focusing on the in-
ner regions of the pre-stellar core, the radial cell sizes of the
grid thereby grow logarithmically from inside out as described
in Section 2.1.

A.1. 1D Convergence Runs

A.1.1. Simulations

The initial conditions and numerical parameters of these
convergence runs are described in Section 3. The simulations are
performed for an initial core mass of Mcore = 60 M� and with an
inner sink cell radius of rmin = 1 AU. We follow the long-term
evolution of the system for at least 163 kyr, representing 2.4
free-fall times of the pre-stellar core. The resulting mass growth
M∗(t) of the centrally forming star is displayed in Figure 22.

A.1.2. Conclusions

The lowest resolution run (Nr = 32) fails to compute the
correct amount of accretion already during the mostly isothermal
initial free-fall phase (up to 25 kyr). For higher resolution runs
with 64 grid cells or more, the mass growth of the forming
star is identical during this phase. At a later evolutionary
epoch, when radiative feedback becomes important, simulations
with higher resolution lead generally to a slower mass growth.
The deviation of a specific run to the next one with double
resolution shrinks toward higher resolution, so the simulations
fulfill the requirement of a monotonic convergence. Our 1D
simulations with varying initial core masses (Section 4.2) use
128 grid cells in the radial direction and an inner radial boundary
at rmin = 1 AU corresponding to a grid size of (Δr)min =
0.08 AU for the innermost grid cell.

A.2. 2D Convergence Runs

A.2.1. Simulations

To fix the number of grid cells necessary for computing the
correct physics of the radiation fluid interaction, we performed
several simulations with varying resolution in the 2D setup,
too. The basic initial conditions and numerical parameter used
for these convergence runs are described in Section 3. The
simulations are performed for a core mass of Mcore = 60 M�



No. 2, 2010 CIRCUMVENTING THE RADIATION PRESSURE BARRIER VIA DISK ACCRETION 1575

Figure 23. Stellar mass M∗ (upper panel) and accretion rate Ṁ∗ (lower panel)
as a function of time t for five different resolutions to determine the adequate
number of grid cells necessary for the collapse simulations of the rotating pre-
stellar cores.

and the inner boundary of the computational domain is located
at rmin = 10 AU. We followed the evolution of the collapsing
core up to 33 kyr (0.5 free-fall times) for the highest resolution
case yet and up to several hundred kyr (about 10 free-fall times)
for a long-term convergence run. The accretion history and the
corresponding mass growth of the centrally forming star are
displayed in Figures 23 and 24.

A.2.2. Conclusions

In contrast to the purely 1D infall (Section A.1), the centrifu-
gal forces slow down the radially proceeding dynamics. So the
usage of 64 grid cells in the radial direction, corresponding to
a radial grid size of the innermost cells of (Δr)min = 1.27 AU,
yields a converged result for the accretion rate onto the forming
high-mass star. The low-resolution run with only 32 grid cells
in the radial direction clearly fails to compute the correct onset
of disk formation after 8 kyr. Due to the clear dominance of the
motion of gas in the radial direction during the initial “free-fall”
phase up to roughly 8 kyr the accretion rates of this epoch are
independent of the resolution used in the polar direction. The re-
quired resolution in the polar direction to compute a converged
result also during later epochs remains notably poor, reflecting
the fact that the complex radiation hydrodynamic interactions
act mostly in the radial direction. This result confirms the expe-
dient choice of spherical coordinates in monolithic core collapse
simulations. Higher resolution of the polar stratification of the
forming circumstellar disk mostly influences the cooling of the
irradiated and viscously heated midplane layer. The usage of
only four or eight grid cells in the polar direction therefore re-
sults in stronger fluctuations of the accretion flow, which vanish

Figure 24. Stellar mass M∗ (upper panel) and accretion rate Ṁ∗ (lower panel)
as a function of time t for two different resolutions in a long-term convergence
study up to the end of the disk accretion phase.

in the higher resolution runs (clearly visible in the lower panel
of Figure 23). On the other hand, the runs with low resolu-
tion in the polar direction underestimate the mass growth of the
forming star only slightly (upper panel in Figure 23). The de-
viations of each run to the next run in higher resolution shrink
toward higher resolution, which means the simulation series
yields a monotonous convergence. The long-term convergence
study (Figure 24) clearly shows that the point in time when the
disk loses its shadowing property depends on the polar resolu-
tion of the circumstellar disk. Higher resolution of the disk’s
stratification results in a stronger anisotropy of the thermal radi-
ation field and therefore minimizes the radiation pressure on the
accretion flow.

The runs with 64 × 16 and 128 × 32 grid cells show fully
converged results even during the epoch of the most rapid
changes at the onset of disk formation at 8 kyr. The spike in the
accretion rate downward during this onset represents the short
period in time, in which for the first time a fluid package from the
outer core region arrived at the innermost radius rmin with high
enough angular momentum to compensate the stellar gravity.
Quickly hereafter the following mass builds up a circumstellar
disk, in which the shear viscosity yields an angular momentum
transfer outward resulting in a steady accretion rate anew. At
later evolutionary phases, the amplitude of the accretion rate
is mostly the result of a quasi-stationary accretion flow inward
and an interactive radiative flux in the outward direction, which
smoothly grows proportional to the luminosity of the forming
massive star. The deviations of the individual runs during this
more evolved and “less violent” phase shrink again for all
resolutions studied. Our 2D simulations presented use 64 ×
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16 grid cells as the default setup corresponding to a grid size
of (Δr × rΔθ )min = 1.27 AU × 1.04 AU for the innermost grid
cells.
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