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Motivations

Why Line Profiles?

Line Profiles constrain the orbital structure;

break degeneracies: mass profile at the center and at

large radii;

constrain feasible formation scenarios.

Why a new method for discrete data?

Gauss-Hermite series are best suited for continuous

data;

non-uniform observational uncertainties;

non-uniform probabilities of membership.
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# 1: Limited Sampling

How many tracers are needed?

Limited sampling limits the achievable accuracy.

Figure: Accuracy Limits: Standard Deviation for h3 and h4 at given

sample size N .

For N significantly smaller than 200, noise may be larger

than expected signal.
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# 2: Convolution with uncertainties

Attenuation by observational uncertainties.

A tracer vi ± δi is associated with the velocity distribution

L ∗ G (δi), rather than with the intrinsic L .

Figure: The effect of observational uncertainties.

On the contrary, a Bayesian implementation directly

measures the intrinsic distribution L .
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A Bayesian Framework

Using all available information

the velocities vi;

the uncertainties δi;

the probabilities of membership pi.

L(~Θ) =

N
∏

i=1

pi

[

L (~Θ) ∗ G (δi)
]

(vi)

~Θ = {µ, σ} ∪ ~Θsh = {µ, σ, s, a}

no binning in velocity space;

reliable uncertainties for any parameter;

intrinsic distribution L recovered.
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Symmetric deviations: s

Figure: The symmetric distributions: L (s; v).

Constructed by using the simple model

f(vr, |~vt|) ∝ |~vt|
−2s exp

[

−
v2r + |~vt|

2

2σ2
r

]

with anisotropy β = s and los direction ϕ(s).
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Asymmetric deviations: a

Figure: The asymmetric distributions:

L (s, a; v).

Asymmetry is

driven by a

suitable

tranformation of

the symmetric

family:

L (s, a; v) ≡
L (s;X(s, a; v))
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Performance

Does it work any better?

Figure: Comparing Accuracy: Standard Deviation for h3 and h4 at a

given sample size N .

The relative gain in accuracy is significant even with no

observational uncertainties or probabilities of membership.
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Assessing Statistical Significance
What if this family is not general enough?

Figure: Testing

significance.

Comparing the maximum likelihood

L̄ =
N
∏

i=1

pi

[

L (~Θ) ∗ G (δi)
]

(vi)

with the average likelihood for the
same parameters

〈
N
∏

i=1

pi L ∗ G 〉 =
N
∏

i=1

pi

∫

[L ∗ G (δi)]
2

and the natural scatter induced by
sample size

χ =
(

L̄− 〈L〉
)

/StD [〈L〉]
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Carina dSph

758 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.53
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Figure: Profiles in circular annuli for the Carina dSph; Rh ≈ 8.2arcmin.
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Sextans dSph

424 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.42
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Figure: Profiles in circular annuli for the Sextans dSph;

Rcore ≈ 16.6arcmin.
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Sculptor dSph

1355 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.33
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Figure: Profiles in circular annuli for the Sculptor dSph;

Rh ≈ 11.3arcmin. Data from Starkenburg et al. 2010 in green.
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Fornax dSph

2409 giants with pi ≥ 0.9; 〈δ〉/σ ≈ 0.22
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Figure: Profiles in circular annuli for the Fornax dSph;

Rh ≈ 16.6arcmin. Asymmeric deviations in angular sectors a(θ).
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Disentangling Populations
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Figure: Metallicity distribution in the Fornax dSph.

L =

N
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i=1


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j
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Plummer density profiles

Gaussian metallicity distributions
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MR - Intermediate - MP
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MR: Rh ≈ 10.5arcmin,

〈Σ′

Mg〉 ≈ 0.55Å, f ≈ .1

Int: Rh ≈ 15.3arcmin,

〈Σ′

Mg〉 ≈ 0.45Å, f ≈ .6

MP: Rh ≈ 23arcmin,

〈Σ′

Mg〉 ≈ 0.26Å, f ≈ .3
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Kinematics
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Figure: Kinematics of the disentangled populations.
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...and Counter-Rotation
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Conclusions

A Bayesian framework for measuring line profiles from

discrete kinematic data avoids any binning in velocity space;

All available information is properly used and accuracy can

be doubled;

Proper probability distributions are required, and a suitable

two-parameters family is presented;

A statistical device is set to readily quantify the significance

of any fit;

Sextans, Carina and Sculptor show line profiles that are

more peaked than Gaussian, pointing towards some radial

anisotropy;

Fornax is different, containing both a ‘radial’ intermediate

population and a ‘tangential’ metal-poor population;

These two sub-populations are counter-rotating, possibly

confirming previous indications of a merger.
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Figure: The effect of apparent rotation on circular annuli.
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Figure: ‘Unstable’ kinematics for the 2-pop division in the Fornax

dSph.
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Figure: Metallicity distribution in the Sculptor dSphs.
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