What models can do for you

James Binney
Oxford University

Outline

- The role played by models in building understanding
- Ingredients of a model
- Models absolutely key for studies of MW
- Recent work on models of the MW's discs

What do we see?

- The more luminous stars
- We measure their
 - Positions & velocities
 - Densities in real & velocity space
- Without some hypothesis these measurements tell us nothing
 - Any distribution of stars in phase space is lawful
- Physics allows us to deduce something once we have a hypothesis
 - That what we observe is enduring/typical

The hypothesis

- It's a steady state (possibly in a rotating frame)
 - Jeans theorem
 - Jeans equations
 - Virial theorem
- The fluctuations are statistically stationary
 - Two-body scattering
 - Scattering by molecular clouds / spiral arms
- ¤CDM is correct and SPH really works
- The system is DM/baryon dominated
- Etc
- Hypotheses all start from outline concepts and proceed to numerical models

The game

- To frame a plausible hypothesis that's maximally restrictive
- To build a numerical model that makes quantitative predictions
- Typically there will be predictions for photometry / star counts / spectroscopy / kinematics so a successful model encapsulates results from many studies
- Adjust the model's parameters & discover which (if any) parameter range is compatible with the data

Open issues

- How to fit model to data?
 - How much pre-processing of data
 - Do we fit o(x) or N(J,J-K,...)?
 - Do we fit $\frac{3}{4}$, h_3 , h_4 or LOSVD or spectra?
- How closely should the model fit the data?
 - Opportunity to identify noise
 - Is the model with the smallest \hat{A}^2 really the best (Mogorrian 2006)
 - Marginalisation over nuisance parameters, e.g., when determining BH mass
- How to learn from mistakes?
 - What do I conclude from a poor fit to the data?
 - understanding the landscape of a high-d space

Ingredients of the model

- ©(x) on account of DM can only be constrained by models
- f(x,v) in some form
 - -f(J)
 - $-\{\mathbf{w_i}\}$
 - closure hypothesis
 - N-body model
- Library of stellar atmospheres/spectra plus Hess diagram or equivalent
 - List of stellar pops with history of SFR
 - Chemical and dynamical modelling inextricably linked

Modelling the MW

- Data characterised by
- Exceptionally strong observational biases
- Large redundancy

Observational bias

- low-L stars will only be seen near the Sun
 - A major problem for N-body models (Brown Velasquez & Aguilar 2005)
 - Particles must be interpreted as groups of stars with varying m
 - Nearby groups will have many members with same (x,v)
- Most interesting regions obscured in V
 - Must model ISM/dust in parallel with stars

Redundancy

- We gather 6d data for many dynamically independent populations
- We seek

 - For each population $f(I_1, I_2, I_3)$
- If we see stars at (x_1,v_1) there must be a computable # of stars at (x_2,v_2) on same orbit
- We can guess the ages of the populations from stellar physics & all populations have evolved in the same fluctuating ©

Models with f(J) are the key

- Actions are the only integrals worth considering
- There are several ways to estimate them from (x,v)
- Analytic DFs f(J) do a remarkably good job of
 - Accounting for given data
 - Predicting subsequent data

Worked example: basic models of the discs

- © from Dehnen & Binney 1998
- Thin/thick & gas discs, bulge & dark halo
- DF a superposition of quasi-isothermal discs

$$f(J_r, J_z, L_z) = f_{\sigma_r}(J_r, L_z) f_{\sigma_z}(J_z),$$

where f_{σ_r} and f_{σ_z} are defined to be

$$f_{\sigma_r}(J_r, L_z) \equiv \frac{\Omega \Sigma}{\pi \sigma_r^2 \kappa} \bigg|_{R_c} [1 + \tanh(L_z/L_0)] e^{-\kappa J_r/\sigma_r^2}$$

and

$$f_{\sigma_z}(J_z) \equiv \frac{\nu}{2\pi\sigma_z^2} e^{-\nu J_z/\sigma_z^2}.$$

Superpositions of quasi-isothermals

- Thick disc a single quasi-isothermal
- Thin disc one for each co-eval cohort:

$$f_{\text{thn}}(J_r, J_z, L_z) = \frac{\int_0^{\tau_{\text{m}}} d\tau \, e^{\tau/t_0} f_{\sigma_r}(J_r, L_z) f_{\sigma_z}(J_z)}{t_0(e^{\tau_{\text{m}}/t_0} - 1)}$$

$$\sigma_r(L_z, \tau) = \sigma_{r0} \left(\frac{\tau + \tau_1}{\tau_{\text{m}} + \tau_1}\right)^{\beta} e^{q(R_0 - R_c)/R_d}$$

$$\sigma_z(L_z, \tau) = \sigma_{z0} \left(\frac{\tau + \tau_1}{\tau_{\text{m}} + \tau_1}\right)^{\beta} e^{q(R_0 - R_c)/R_d}$$

- Adopt $\xi_1 = 0.01 \, \text{Gyr}$, $\xi_m = 10 \, \text{Gyr}$, = 0.33
- Let amoeba Fit $\frac{3}{4}_{r0}$ $\frac{3}{4}_{z0}$ R_d q for each disc & fraction of stars in thick disc

Predicted fits to SDSS and RAVE data (Ivezic 2008 & Burnett 2010)

Global structure

Thin & thick discs individually exponential But vertical scaleheight of thin disc $z_0(R)$ Results in rapid variations in $R_d(z)$

$V_{A}(R,z) & \frac{3}{4}(R,z)$

Curves for R=6 kpc in red Sharp transition at z=1kpc t slowly rotating thick disc

Curve for R=8kpc in red
Transition between thin & thick discs again at z=1kpc
R=6kpc a very steep gradient in thin disc & shallow gradient in thick

The parameters

		(a)	(b)	(c)
Thin	σ_{r0}	47.3	40.0	38.6
	σ_{z0}	17.2	22.4	22.7
	$R_{ m d}$	1.91	2.76	2.66
	q	0.13	0.13	0.138
Thick	σ_{r0}	24.7	26.7	29.2
	σ_{z0}	26.9	34.6	32.6
	$R_{ m d}$	5.45	3.70	3.68
	q	0.26	1.14	1.08
	$f_{ m thk}$	0.18	0.24	0.265
χ^2		5.85	7.25	10.1

Conclusions

- Measurements are too fragmentary to be useful without a model
- A model is based on a hypothesis and is the means by which we test the hypothesis
- Models
 - pull together disparate data
 - exploit dynamics to predict data not yet taken
- Several important issues are still open regarding how we fit models to data & draw inferences from the fit
- Models key for studies of MW
- Models with f(J) are best
- Some pleasing/intriguing aspects of models with analytic DFs of the Galactic discs
- Next step is to add chemistry
- The technology should be applied to external galaxies