Why models based on actions?

- Jeans theorem encapsulates loss of freedom on restriction to equilibrium: f(x,v)! f(I₁, I₂, I₃)
- Actions are uniquely favoured integrals:
 - Adiabatic invariants
 - Useful during slow changes in ©
 - Enable us to identify orbits in neighbouring potentials
 - Easy to understand physically
 - Stellar population is a distribution of stars in 3d action space
 - range (0,1)
 - Can be used as momenta of a canonical coordinate system
 - conjugate variables the angles μ
 - (μ ,J) the natural coordinates of perturbation theory
 - $d^3x d^3v = (2\frac{1}{4})^3 d^3J$ so f(J) density of stars in 3d action space
 - Several ways to compute them (in addition to torus machine)
 - Adiabatic approx (B & Schoenrich)
 - Staeckel approximations (Sanders)
 - Also for N-body orbits (Fox)

Why models with known DF?

- Coordinates of individual stars of no significance
 - it is the density of stars that carries information
- Since stars are distinguishable by age, mass, [Fe/H], [®/Fe],.... we need many DFs f(J)
- On account of selection effects and errors we must fit model in space of observables
 - (I,b,π, ¹_®, ¹_±, ν_{los}, V, V-I, T_{eff}, logg, [Fe/H],...)
 - 11d and counting
- n graduations per axis! n^d cells, >30 stars/cell! 1.5e9 stars in catalogue
- Even with Gaia barely feasible because getting optimal grid will be extremely hard
- But suppose have N-body model
 - Great majority of particles will be too far from Sun enter mock catalogue, so need >>10⁹ particles to get Gaia-sized catalogue
- People usually project catalogue to low-d subspace and grid that
 - Projection erases correlations between variables but correlations are key