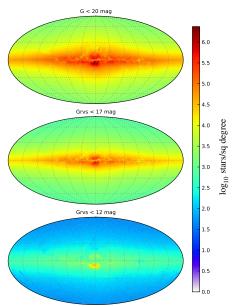
Gaia — Early data releases and thoughts on data access facilities

Anthony Brown

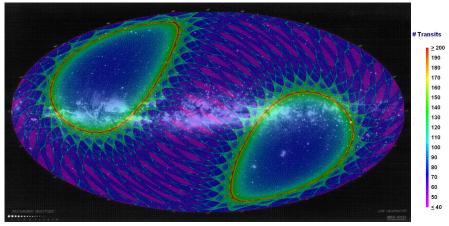
Sterrewacht Leiden, Leiden University brown@strw.leidenuniv.nl

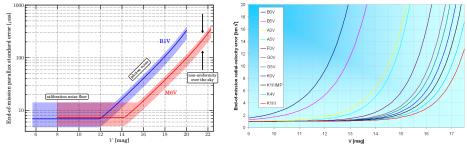
- Gaia status and survey overview
- Catalogue, archive, and data access facilities
- Data release scenario
- Extra material for weekend reading



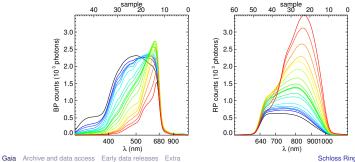
Simulated Gaia sky - Robin et al., arXiv:1202.0132

- Three simultaneous observing modes
- Complete to G = 20 (V = 20-22)
- Observing programme: autonomous on-board detection and unbiased
- Quasi-regular time-sampling over 5 years (~ 70 observations)
- Angular resolution comparable to HST


Number of objects


- 1 billion stars to G = 20
- $10^6 10^7$ galaxies
- 500 000 quasars
- 3×10^5 solar system bodies
- tens of thousands of exoplanets

Schloss Ringberg 13.04.2012 - p.2/37


Number of field of view transits



More info at www.rssd.esa.int/gaia ('Science Performance' button) and in arXiv:1201.3238

Schloss Ringberg 13.04.2012 - p.4/37

Launch August 2013

Images courtesy EADS-Astrium and ESA

Gaia Archive and data access Early data releases Extra

Basic catalogue contents

Astrometry

• ...

- $\alpha, \delta, \varpi, \mu_{\alpha*}, \mu_{\delta}$ for $\gtrsim 1$ billion stars
- ~ 60 million binaries, orbital solutions where possible

(Spectro)photometry

- Multi-epoch G, G_{BP} , G_{RP} , G_{RVS} , blue and red photometer prism spectra
- A_V , T_{eff} , log g, [M/H], and [α /H] for brighter stars
- luminosity, mass, age for TBD subset of single stars

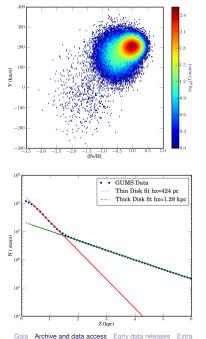
Spectroscopy

۰...

- Radial velocities to $V \sim 17$ (~ 150 million stars)
 - multi-epoch for V < 13
- Rotational velocities, atmospheric parameters, interstellar reddening (V < 13, 5 million)
- Abundances (V < 12, 2 million)

```
....
Gaia Archive and data access Early data releases Extra
```

Ingredients for advanced data interpretation


- Allow for precise hypothesis testing
 - Full covariance matrix of errors
 - Tools to calculate star-to-star covariance terms
- Intermediate data products, raw data, and processing software
 - re-processing of (parts of) the Gaia data based using better processing algorithms, new information, etc
- Detailed documentation on completeness function
 - important in, e.g., crowded regions
- Software to facilitate proper use of the data
 - For example, correctly incorporating parallaxes in distance or luminosity estimates
- 'Bring the processing to the data'
 - run your code on virtual machines near the data
- 'Living archive'
 - requires careful versioning
- Transparent inter-operation with other surveys
 - cross-matching not trivial

What the Gaia community can do for you

Go to: www.rssd.esa.int/gaia, look for 'Science Performance' button

- Background information on instruments and error modelling
- Interpolation tables and formulae
- Error variations on sky
- Transformations from Johnson, Sloan systems to Gaia photometric system
- Will be updated with more information on astrophysical parameter performances, other products from photometry and spectroscopy

What the Gaia community can do for you

- Universe model is published (arXiv:1202.0132)
 - All sources that Gaia can observe within and outside the Galaxy
 - Available for use (on request for now)
- Simulated catalogue is done and will be made available
 - Gaia measurements and their errors
- Gaia simulator can also be used to process, e.g., N-body model outputs

More info at

http://gaia.am.ub.es/GUMS-10/

Schloss Ringberg 13.04.2012 - p.10/37

What you can do for the Gaia community

- Preparatory work for Gaia data publication and archiving has started
 - Will lead to new DPAC unit for data validation, publication, documentation (CU9)
- Maximizing science depends on archive that can deliver what you want
 - tell us how you want to use the Gaia data
 - feel free to go crazy...
 - think about possibilities in 2020!

Provide input through:

http://great.ast.cam.ac.uk/Greatwiki/GaiaDataAccess

- Give me all stars with a certain angular momentum
- I want to reprocess all Gaia data and study the effects of systematic errors on σ_γ

Requested from my iDevice...

Early data releases

- We're all impatient
- Science verification (dialogue 'modellers' \leftrightarrow DPAC)
 - feedback to DPAC to improve data processing
- Target selection for complementary surveys
- Early familiarization with Gaia catalogue and archive
- Feedback on data access facilities

Earliest releases will concern transient sources ('Science Alerts') and Near Earth Objects. Not further discussed here

Constraints on early data releases

<u>Time</u>

- Launch date
- Anticipate ~ 6 Months for cruise to L2, commissioning, DPAC systems initialization
- First full sky coverage after 6 months of nominal scanning
- Disentangling parallaxes and proper motions requires at least 18 Months of data collection
- Processing, calibration, validation take time
- Each data release requires time to go from DPAC internal database to public archive (3 Months)

Data processing and resources

- Quality of the data
- Inter-dependencies DPAC software systems
- Available staff effort (talk to your funding agencies!)

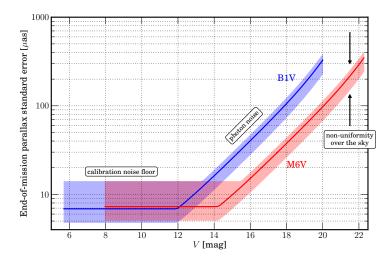
Data release scenario

Very tentative data releases — highly summarized:

- Assumes smooth operations!
- All values prior to final release *may* be truncated at some confidence level
- Each release updates the previous and contains significant new additions

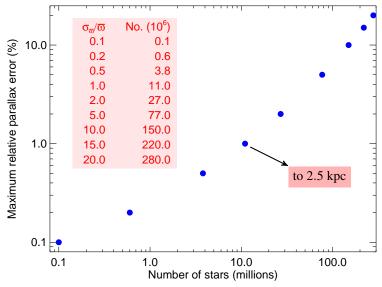
August 2013 launch

- L+22M Positions + G magnitude (\sim all sky, single stars)
 - Includes more often scanned Ecliptic pole regions
 - Simultaneous two-colour photometry release still under study
 - Hundred Thousand Proper Motions (Hipparcos-Gaia, $\sim 50 \ \mu as/yr$)
- L+28M more tentative radial velocities for bright stars and full astrometry (α , δ , ϖ , $\mu_{\alpha*}$, μ_{δ}) where available.
- L+40M full astrometry, orbital solutions, $(G_{\rm BP} G_{\rm RP})$, some BP/RP Spectrophotometry and astrophysical parameters , radial velocities, RVS spectra
- L+65M Updates on previous release including more sources, source classifications, multiple astrophysical parameters, variable star solutions and epoch photometry for them, solar system results

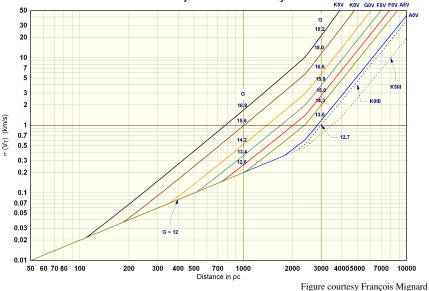

End+3yr Everything

Extra material on expected Gaia performances

	B1V	G2V	M6V
Bright stars	(6 < V < 12)	(6 < V < 12)	(8 < V < 14)
	5-14	5-14	5-14
V = 15	26	24	9
V = 20	330	290	100


Sky averaged parallax accuracies (μ as)

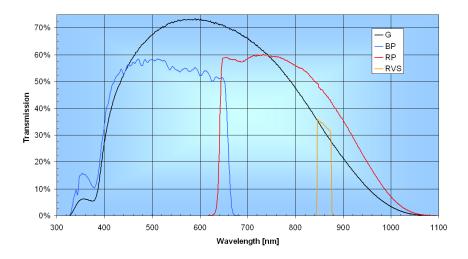
- Single stars, no extinction
- Apply factors ~ 0.5 and ~ 0.7 for positions and proper motions
- Radiation-damage effects on CCDs taken into account approximately
- Estimates include a 20% margin (factor 1.2) for unmodelled errors
- Astrometric instrument designed for up to 750 000 stars/degree²


- 1. 6 < G < 12: bright star regime (calibration errors, CCD saturation)
- 2. 12 < G < 20: photon-noise regime, sky-background and electronic noise setting in at $G \sim 20$

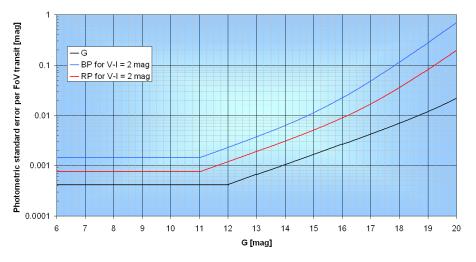
Statistics of relative parallax accuracies achieved by Gaia

Gaia Archive and data access Early data releases Extra

Schloss Ringberg 13.04.2012 - p.18/37


Accuracy in Transverse Velocity

Gaia Archive and data access Early data releases Extra


Schloss Ringberg 13.04.2012 - p.19/37

Gaia photometry

Broad band photometry

Gaia photometry

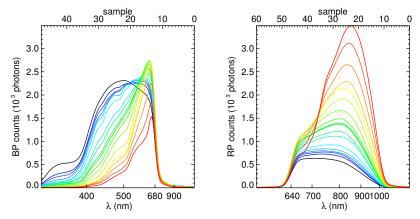

Broad band photometric accuracy per field of view transit

Figure courtesy Jos de Bruijne (ESA)

Gaia photometry

Spectrophotometer

- Two channels: 330–680 nm (BP), 640–1000 nm (RP)
- Low resolution (\sim 3–30 nm/pixel) prism spectra
- Allows derivation of A_V , T_{eff} , log g, [M/H], and [α /H] for brighter stars

For preliminary estimates of the astrophysical parameter accuracies see Bailer-Jones, 2010, MNRAS 403, 96

Gaia Archive and data access Early data releases Extra

Gaia spectroscopy

Slit-less spectroscopy in Ca triplet region (847–874 nm)

• $\lambda/\Delta\lambda \sim 11\,000$

Sky averaged	radial	velocity	accuracies	(km	s^{-1})
--------------	--------	----------	------------	-----	------------

	V	$\sigma_{v_{ m rad}}$
B1V	7.0	1
DIV	12.0	9
G2V	13.0	1
02 V	16.5	13
K1IIIMP	13.5	1
	17.0	13

- Single stars, no extinction
- Radiation-damage effects on CCDs taken into account approximately
- Estimates include a 20% margin (factor 1.2) for unmodelled errors
- Spectroscopic instrument designed for up to 36 000 stars/degree²

Gaia spectroscopy

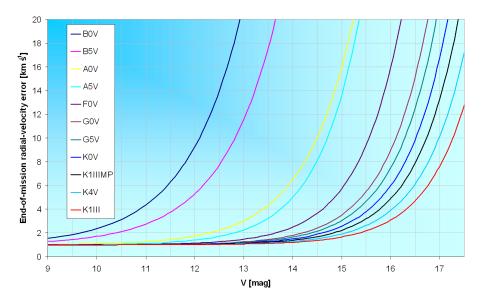
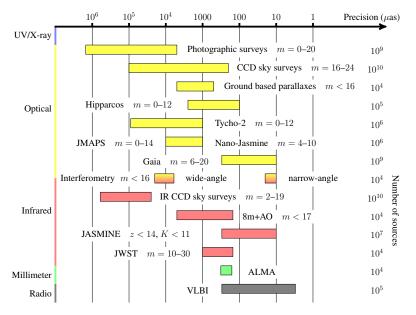


Figure courtesy Jos de Bruijne (ESA)

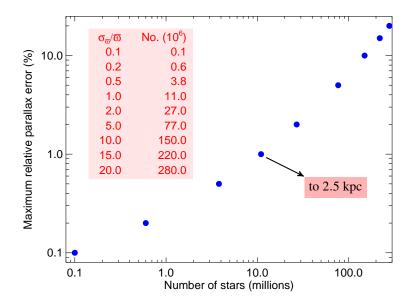
Schloss Ringberg 13.04.2012 - p.24/37

Gaia spectroscopy


Stellar and interstellar parameters (conservative estimates)

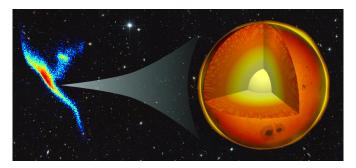
 Radial velocities 	$V \le 17$	$\sim 150 \times 10^6 \; \rm stars$
 Rotational velocities 	$V \le 13$	$\sim 5 imes 10^6$
 Atmospheric parameters 	$V \le 13$	$\sim 5 imes 10^6$
 Abundances 	$V \le 12$	$\sim 2 imes 10^6$
 Interstellar reddening 	$V \le 13$	$\sim 5 imes 10^6$

Diagnostics


- Binarity/multiplicity, variability
- $\sim 10^6$ spectroscopic binaries
- $\sim 10^5$ eclipsing binaries ($\sim 25\%$ SB2 \rightarrow masses)
- Long period classical Cepheids $\sigma_{v_r} < 7 \text{ km/s} \rightarrow 20\text{--}30 \text{ kpc}$

Gaia in context of other astrometric surveys

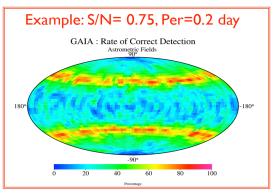
Examples of Gaia's impact on astronomy


Giant leap in parallax accuracy and reach

Stellar physics

Accurate distances across the HR diagram

- luminosity calibration
 - calibration photometric and spectroscopic distance indicators
- astrometric detection of stellar, sub-stellar and planetary companions
 - ▶ 10000 stars with masses to 1%
- fundamental parameters for rare stellar types
- precision tests of stellar interior models and stellar evolution


Stellar physics: variable stars

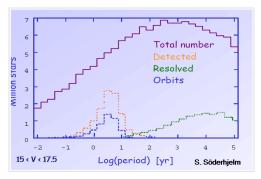
Gaia survey

- ~ 70 epoch survey over 5 years
- mmag accuracy per single observation

Quantitative impact

- 20×10^6 classical variables
- 1–5 million eclipsing binaries
- ~ 5000 Cepheids, 70 000 RR Lyr
 - RR Lyr visible out to ~ 75 kpc

Eyer & Mignard 2005

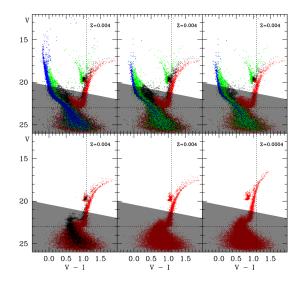

Stellar physics: small stellar systems

Power of Gaia

- Survey mode, sensitivity to non-linear motion
- quasi-regular time sampling over 5 yrs
- Large range of separations and Δm
- Spectroscopic measurements

Expected results

- various categories of binaries
 - 10⁷ resolved within 250 pc (long period)
 - ▶ 10⁷ astrometric binaries
 - 10⁶⁻⁷ eclipsing binaries, 10⁶ spectroscopic
- ◆ 50% complete census to 250 pc
- masses to 1% for 10^4 stars
- constraints on evolutionary models

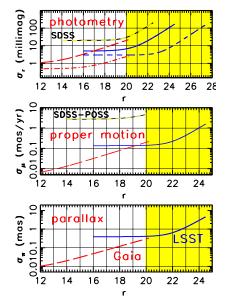

Söderhjelm 2005

Milky Way and Local Group

Dissecting the Milky Way

- 6D phase (\mathbf{r}, \mathbf{v}) over full sky and large volume
- Mapping of stellar ages and compositions
 - in combination with complementary spectroscopic surveys
- Mapping of dynamical quantities $(E, L_z, ...)$
 - as a function of composition, age
- Study other 'solar neighbourhoods'
- Formation of inner halo
 - Gaia essential for detecting accretion signatures
- Mapping the ISM in 3D

Milky Way and Local Group


- Astrometry/photometry for individual stars in local group dwarf galaxies
- Survey limit G = 20corresponds to V = 20-22

Tolstoy, Hill, Tosi 2009

Gaia and other surveys

What Gaia provides

- Excellent calibrations of standard candles that photometric surveys can see to 10× further distances
 - accurate distance moduli to main sequence stars of varying spectral types and abundances
 - same for brighter tracers including variables
- Reference frame for astrometry
- Target selection for spectroscopy (e.g., dwarf/giant separation with parallax)

LSST science book

Solar system science

- Accuracies: ground-based 0.1–1 arcsec, Gaia single measurement 0.1–1 mas
- Systematic survey down to 20 mag $\sim 3 \times 10^5$ objects
 - > $\sim 50\,000$ new objects expected
 - Observations at high ecliptic latitudes and to within 45° from Sun \rightarrow exotic orbits
- Orbits: for virtually all objects observed ×30 better than now
- Masses from close encounters ~ 100 masses expected
- Diameters for over 1000 asteroids: shape, density
- Photometric data in several bands: albedo, taxonomic classification
- Light curves over 5 years: rotation, pole, shape
- Space distribution vs. physical properties
- Perihelion precession for 300 planets: GR testing, solar J2

Exoplanets with Gaia

Astrometric survey

- monitoring of several 10^5 FGK stars to ~ 200 pc
- detection limits $\sim 1 M_{\rm J}$ and $P < 10 {\rm yr}$
- complete census of all stellar types over P = 2-9 yr
- masses rather than lower limit (m sin i)
- multiple systems measurable
- Results expected
 - ▶ orbits for ~ 5000 systems
- Photometric transits
 - ▶ ~ 1000 to 10000 with $a \leq 1$ AU

d <	stars	planets
100	60 000	1500-5000
200	500 000	5000-20000

Fundamental physics

- 1. Light deflection
 - Monopole deflection from the Sun: $\sigma_{\gamma} \sim 10^{-6}$ (systematic errors remain a difficult challenge)
 - First detection of a number of subtle deflection effects from the planets: monopole, quadrupole, gravitomagnetic
- 2. Motion of the solar system: perihelion and node precessions, quadratic deviations in the mean longitudes

$$\sigma_{eta} \sim 10^{-3} \,, \quad \sigma_{J_2^{\rm Sun}} \sim 10^{-7} \,, \quad \sigma_{\dot{G}/G} \sim 10^{-12} \,\, {
m yr}^{-1} \,, \quad \sigma_\eta \sim 10^{-3}$$

- 3. Local Lorentz Invariance: Gaia is a kind of Michelson-Morley experiment
- 4. Pattern matching in proper motions and epoch astrometry:
 - Solar system acceleration $\sigma_a/a < 0.1$
 - Improved estimates of the stochastic background of primordial low frequency gravitational waves
- 5. Astrometric information for the optical components of some objects that are important for other relativistic tests