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overview

complete set of bi-orthonormal basis functions

with          sky position and     line-of-sight velocity and

allow to expand

with (e.g. for an N-body model)
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usage in dynamical modelling of discrete data

1. log-likelihood approach:

modify model to maximise

with

=> requires velocity error convolution (    )

2. generalised moment fitting:

modify model to minimise

with

=> requires velocity error de-convolution  (     )
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radial basis functions: Sersiclets
Sersic (1963) profile: 

ansatz for radial basis functions:

                                                  with

gives the bi-orthogonality relation

                                                        with

of the Laguerre polynomials

=> Sersiclets of Andrae, Melchior & Jahnke (2011)
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radial basis functions: Sersiclets

problem:

too much resolution at

=> Andrae et al.: more complicated model for lowest order
                         => requires fully numerical treatment

alternatively: 

     1  generalise 

     2  allow 

R < R0

Sn(R) �= S̄n(R)
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radial basis functions: beyond Sersiclets

the ansatz:

                                    and

with              and

again leads to Laguerre polynomials:

=>  more general lowest order (parameters              )

=>  more flexible higher order (parameters       )

=>  still fully analytical (recursive computation etc.)

=>  useful if truncation at large radii as in Sersic profile
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radial basis functions: beyond Sersiclets
new parameters allow to
adapt resolution



radial basis functions: beyond Sersiclets

fit of Plummer with Sersiclets (                                            )ns = 0.6, c = 1, β = 0, γ = 0



radial basis functions: double power law models
double power law model:

ansatz:

                                    and
with

gives the bi-orthogonality relation

For
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radial basis functions: double power law models
the bi-orthogonality relation becomes

with                                           and

bi-orthogonality relation of Jacobi polynomials

with                  , i.e.

thus

=> lowest-order parameters:

=> higher-order parameters:   

=> useful for power-law fall-off
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radial basis functions: double power law models

fit Sersic model (              ) with double-power-law models based
on Plummer (                                  ) with 

ns = 0.6
γ0 = 0, γ∞ = 4, η = 2 α0 = β0 = 0



azimuthal harmonics
complex harmonics                : computationally awkward

trigonometric harmonics                          :  special case 

=> use 

then

=> no complex numbers, no special cases, self-conjugate

     (basis of Hartley transform: real-valued alternative to Fourier)
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velocity profile: Gauß-Hermite
well-known from LOSVD modelling

                                       with 

error convolved basis functions

obey recursion relation (no need for numerics)

error de-convolution also possible analytically 

=> useful for log-likelihood & moment fitting
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velocity profile: Gauß-Hermite
expanding

expansion may obtain 

expansion has 
    outside escape velocity

f(v) = (1− v2)9/2

f < 0

f �= 0



velocity profile: Gauß-Hermite
f(v) = (1− v2)9/2expanding

expansion may obtain 

expansion has 
    outside escape velocity

depending on parameters

f < 0

f �= 0



velocity profile: powers
basis functions
                                                            for   

lowest order has mean & dispersion velocity

                               and

which can be inverted to give

=> parameters

=> zero outside escape velocity 

=> error convolution must be done numerically
=> error de-convolution impossible
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DM profile of Fornax dSph
• modelling dynamical friction on Fornax 5 GCs

• assume 5 plausible halo models
4 David R. Cole, Walter Dehnen, Justin Read, Mark Wilkinson

Table 3. Results from the mass modelling. γ0 is the inner slope, γ∞ is the
outer slope and η is the transition parameter. γ100pc is the slope at 100 pc for
the three models which are in agreement with the mass modelling but are
not as favoured as the best fit model. These have been chosen to in order to
have a range of inner slopes to compare. ρ0 is the proportionality constant
in equation 3. M∞ is the total mass of the model and rs is the scale radius
for this model.

Name γ0 γ100pc γ∞ η ρ0 M∞ rs
M"kpc−3 M" kpc

Shallow slope 0.08 0.1 4.65 2.77 7.30 x 107 1.23 x 108 0.62
Intermediate cusp 0.13 0.5 4.24 1.37 1.95 x 108 1.51 x 108 0.55
Steep cusp 0.52 1.0 4.27 0.93 1.57 x 108 1.98 x 108 0.80
Best fit model 1.25 - 4.68 1.82 1.41 x 107 1.52 x 108 1.13

to run hundreds of simulations which sample the velocities and line
of sight distances appropriately. This is described in detail below.

2.3.1 Modelling the mass structure

Mark can you provide some text here? We have access to non-
parametric theoretical modelling of the mass structure of Fornax
based on the available stellar kinematic data. This use a Markov
Chain Monte Carlo method with n free parameters to produce a
best fit matter profile for the Fornax dwarf galaxy. Our models have
been selected to cover the best range of models which are plausible
based on this analysis. They include:

• The best fitting density curve based on equation 3.
• The best fit models with slope matching equation 3 with γ0 ≈

0.1 at 100 pc. This is to represent a cored model.
• The best fit models with slope matching equation 3 with γ0 ≈

0.5 at 100 pc. This is to represent an intermediate model.
• The best fit models with slope matching equation 3 with γ0 ≈

1.0 at 100 pc. This is to represent a fully cusped model.

Table 3 shows the results from the modelling which best match
our requirements. In all cases the value for γ0, γ∞, η, ρ0, the total
mass M∞ and the scale radius rs were taken from the mass mod-
elling results.

2.3.2 Creating mass models

On the basis of this modelling we have selected a number of mass
distributions to explore how the different density profiles affect the
evolution of the orbits of the Fornax GCs. Our main objective is to
see if there are significant differences between a cuspy dark mat-
ter profile as predicted by cosmological simulations (Dubinski &
Carlberg 1991; Navarro et al. 1997) and a more cored one. There is
circumstantial evidence that the halos of dSphs are not cusped but
have a shallow cusp or core (Gilmore et al. 2007). For these reasons
we have chosen a range of mass distributions whch are all in close
agreement with the modelling referred to above (see table 4).

In addition to the models based on the work described in sec-
tion 2.3 we have included three more in order to more thoroughly
explore the effects of the size and shape of Fornax. One is based on
the parameters which have arisen from the mass modelling referred
to above but has a triaxial shape. Its parameters are given in table
4. Its principle axis ratios are c/a = 0.5 and b/a = 0.66.

The final two models are spherical models with a large core.

Figure 1. The mass structure for each halo used in our simulations. The top
plot shows density versus radius, the middle plot shows mass versus radius
and the bottom plot shows slope versus radius for each halo model.

Figure 2. The observed stellar velocity dispersion (Walker et al. 2007) plot-
ted against the theoretical velocity dispersion for each halo used in our sim-
ulations based on MCMC mass modelling.

These are based on the work described in Walker & Peñarrubia
(2011). They use a non-parametric statistical modelling technique
to distinct stellar popluations within Fornax to define the enclosed
mass at two distinct radii corresponding to the half light radii of the
two populations.

The density profiles, mass distribution and variation of density
slope with radius for these models are shown in figure 1.
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Table 3. Results from the mass modelling. γ0 is the inner slope, γ∞ is the
outer slope and η is the transition parameter. γ100pc is the slope at 100 pc for
the three models which are in agreement with the mass modelling but are
not as favoured as the best fit model. These have been chosen to in order to
have a range of inner slopes to compare. ρ0 is the proportionality constant
in equation 3. M∞ is the total mass of the model and rs is the scale radius
for this model.

Name γ0 γ100pc γ∞ η ρ0 M∞ rs
M"kpc−3 M" kpc

Shallow slope 0.08 0.1 4.65 2.77 7.30 x 107 1.23 x 108 0.62
Intermediate cusp 0.13 0.5 4.24 1.37 1.95 x 108 1.51 x 108 0.55
Steep cusp 0.52 1.0 4.27 0.93 1.57 x 108 1.98 x 108 0.80
Best fit model 1.25 - 4.68 1.82 1.41 x 107 1.52 x 108 1.13

to run hundreds of simulations which sample the velocities and line
of sight distances appropriately. This is described in detail below.

2.3.1 Modelling the mass structure

Mark can you provide some text here? We have access to non-
parametric theoretical modelling of the mass structure of Fornax
based on the available stellar kinematic data. This use a Markov
Chain Monte Carlo method with n free parameters to produce a
best fit matter profile for the Fornax dwarf galaxy. Our models have
been selected to cover the best range of models which are plausible
based on this analysis. They include:

• The best fitting density curve based on equation 3.
• The best fit models with slope matching equation 3 with γ0 ≈

0.1 at 100 pc. This is to represent a cored model.
• The best fit models with slope matching equation 3 with γ0 ≈

0.5 at 100 pc. This is to represent an intermediate model.
• The best fit models with slope matching equation 3 with γ0 ≈

1.0 at 100 pc. This is to represent a fully cusped model.

Table 3 shows the results from the modelling which best match
our requirements. In all cases the value for γ0, γ∞, η, ρ0, the total
mass M∞ and the scale radius rs were taken from the mass mod-
elling results.

2.3.2 Creating mass models

On the basis of this modelling we have selected a number of mass
distributions to explore how the different density profiles affect the
evolution of the orbits of the Fornax GCs. Our main objective is to
see if there are significant differences between a cuspy dark mat-
ter profile as predicted by cosmological simulations (Dubinski &
Carlberg 1991; Navarro et al. 1997) and a more cored one. There is
circumstantial evidence that the halos of dSphs are not cusped but
have a shallow cusp or core (Gilmore et al. 2007). For these reasons
we have chosen a range of mass distributions whch are all in close
agreement with the modelling referred to above (see table 4).

In addition to the models based on the work described in sec-
tion 2.3 we have included three more in order to more thoroughly
explore the effects of the size and shape of Fornax. One is based on
the parameters which have arisen from the mass modelling referred
to above but has a triaxial shape. Its parameters are given in table
4. Its principle axis ratios are c/a = 0.5 and b/a = 0.66.

The final two models are spherical models with a large core.

Figure 1. The mass structure for each halo used in our simulations. The top
plot shows density versus radius, the middle plot shows mass versus radius
and the bottom plot shows slope versus radius for each halo model.

Figure 2. The observed stellar velocity dispersion (Walker et al. 2007) plot-
ted against the theoretical velocity dispersion for each halo used in our sim-
ulations based on MCMC mass modelling.

These are based on the work described in Walker & Peñarrubia
(2011). They use a non-parametric statistical modelling technique
to distinct stellar popluations within Fornax to define the enclosed
mass at two distinct radii corresponding to the half light radii of the
two populations.

The density profiles, mass distribution and variation of density
slope with radius for these models are shown in figure 1.
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• normalise models by stellar velocity dispersion (no fit)

• cored model as suggested by Walker & Peñarrubia (2011)
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DM profile of Fornax dSph
• modelling dynamical friction on Fornax 5 GCs

• assume 5 plausible halo models

• GC consistent with stellar distribution

• lightest GC furthest away ➙ dynamical friction at work

• for each GC: assume line-of-sight position z ∈ [0,2kpc]

• sky velocities assuming β=–0.33 σ = 10.5 km/s

• many (700) simulations per halo model

The mass distribution of the Fornax dSph: constraints from its globular cluster distribution 3

Table 1. Data for the Fornax globular clusters and Fornax itself. The mass
estimates from Mackey & Gilmore (2003b) are given as a logarithm and
we show the most likely mass in column 3. rc is the core radius for a King
model ((King 1962)). rp is the projected distance of the cluster from the
centre of Fornax. rlos is the distance to each cluster and vlos is the line of
sight velocity relative to Fornax itself.
References: (a) Mackey & Gilmore (2003b), (b) Mackey & Gilmore
(2003a), (c) Greco et al. (2007), (d) Mateo et al. (1991), (e) Walker et al.
(2009), (f)Buonanno et al. (1999), (g)Mateo (1998).
1 The radius given for Fornax is its half light radius.

GC log MGC MGC r1c rp rlos vlos
(M!)a (105M!)a ( pc)a (kpc)a (kpc) (km s−1)d

Fornax 8.15 +0.19−0.37
e 1420e 668e - 137 ± 13b, f 0

138 ± 8g
1 4.57 ±0.13 0.37 10.03 1.6 130.6 ± 3.0b -
2 5.26 ±0.12 1.82 5.81 1.05 136.1 ± 3.1b −1.2 ± 4.6
3 5.56 ±0.12 3.63 1.60 0.43 135.5 ± 3.1b 7.1 ± 3.9
4 5.12 ±0.24 1.32 1.75 0.24 134 ± 6c 5.9 ± 3.4
5 5.25 ±0.20 1.78 1.38 1.43 140.6 ± 3.2b 8.7 ± 3.6

of the Fornax GCs. For our purposes the main data needed are ac-
curate accurate estimates of the masses, sizes, three dimensional
positions and velocities of the globular clusters.

The best estimates for the relevant data are given in table 1.
The values for the core radius of each GC (rc) are based on the sur-
face brightness profiles calculated in Mackey & Gilmore (2003b).
These are Elson, Fall and Freeman (EFF) models ((Elson et al.
1987)) and the King core radius rc is related to the EFF scale pa-
rameter a by equation 1.

rc = a(22/γ − 1)1/2 (1)

where γ is the power law slope of the surface brightness at large
radii.

If we compare the distance to the Fornax dwarf Spheroidal
(dSph) galaxy to the distances of its individual GCs and the asso-
ciated errors it can be seen that the measurments of the distance of
the Fornax GCs are not good enough to provide accurate 3 dimen-
sional locations. They could not be used for orbit modelling which
could distinguish between different matter distributions.

In order to make progress in modelling the evolution of the
orbits of the Fornax GCs we will make use of statistical methods to
select the velocities and the third dimension of their distances from
the centre of Fornax. The methods are fully described in section 2.4
but in brief it consists of selecting velocties which agree with the
measured line of site (LOS) velocities and are in agreement with
the stellar velocity distributions observed for Fornax.

The kinematics of the stellar component of Fornax itself have
been widely studied. The data for Fornax is shown in table 2. The
range of velocity dispersions is not great and the profile for Fornax
is approximately flat. We have taken the velocity dispersion to be
constant with radius and have chosen a value of 10.5 kms−1. The
velocity dispersion is observed to be mildly tangentially anisotropic
(Walker et al. 2007; !okas 2009) and so we have chosen a value for
the β parameter of β ≈ −0.33. β is given by equation 2. From table
2 it can be seen that the stellar velocity dispersion anisotropy is
subject to some uncertainty. However the difference in the radial
and tangential velocity dispersions produced by using this value of

Table 2. Kinematic data for the Fornax dSph.

Reference Approx. range of Approxx range of β
radii ( kpc) σ (km s−1)

Walker et al. (2007) < 0.1 - 1.7 7 - 12 −0.5
!okas (2009) 0.1 - 1.3 9 - 11.5 −0.33+0.15−0.19

β is small with σr ≈ 9.5kms−1 and σt ≈ 11kms−1 so this will not
have a significant effect on our results.

β ≡ 1 −
σ2θ + σ

2
φ

2σ2r
(2)

We have used these parameters for our modelling of the For-
nax GC cluster orbits (see section 2.4 ) and for the models of the
stellar components of the different Fornax mass models where the
stars act as a tracer population moving in the field of the overall
mass model (see section 2.3.3 ).

2.2 Technicalities

To generate initial N-body conditions for the Fornax galaxy mod-
els, we sample positions from equation (3) and velocities from self-
consistent distribution functions of the form L−2β f (ε) for constant
β models with f (ε) obtained from an Abel inversion (Cuddeford
1991).

ρ(r) = ρ0r−γ0 (1 + (r/rs)η)−((γ∞−γ0)/η) sech(r/rt). (3)

The resolution in the inner parts is enhanced by increasing the
sampling probability by a factor g(ε)−1 which is compensated by
setting particle masses µi proportional to g(εi). We used

g(ε) ∝
1 + q rηcirc(ε)
rηcirc(ε) + r

η
s

(4)

with q= 4 the ratio between maximum and minimum particle mass
and rcirc(ε) the radius of the circular orbit with specific energy ε.
The gravitational forces were computed using a softening kernel
with density profile given in equation (5) below and rs replaced by
the softening length ε = 0.01. Testing this method for our particular
purposes we found that it allows a reduction of N to half at the same
central resolution without any adverse effects.

ρs(r) =
15
8π

r4s ms
(r2 + r2s )7/2

. (5)

We use a unit system where G = 1, 1kpc = 1, 222288M! = 1
which implies a time unit of 1 Gyr and velocity units where
1kms−1 ≈ 1(0.9778kms−1 = 1).

2.3 Theoretical modelling

Our modelling technique has several stages. First we find a plausi-
ble range of mass models based on a Markov Chain Monte Carlo
method which provides the slopes, mass and scale radii for a split
power law density profile. This represents the mass structure of the
whole of Fornax not just the dark matter. We then perform a consis-
tency check and test that these models produce stellar kinematics
consistent with the observed kinematics of Fornax. We establish a
statistical method for setting the initial distances and velocities for
the Fornax GCs which is consistent with the observations of the
GCs and Fornax’s stellar component. We then use these techniques

c© 2010 RAS, MNRAS 000, 1–12
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DM profile of Fornax dSph
• modelling dynamical friction on Fornax 5 GCs

• results for cuspy and cored halo models
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DM profile of Fornax dSph
• modelling dynamical friction on Fornax 5 GCs

• for cuspy halo models:
massive GCs sink into core of Fornax in ≾ 2 Gyr
➙ either Fornax has no cuspy halo
➙ or GCs have just arrived (would expect more M-segratation)
➙ or GCs are near peri-centre of their orbits

• for shallow cored halo models:
in 2Gyr massive GCs sink by factor ~3-4 for most orbits
➙ Fornax may have a shallow core & GCs are sinking slightly
➙ GCs have been farther out in past

• for large-core halo (very flat inner profile):
GCs don’t sink (‘dynamical buoyancy’)
➙ GCs have settled at edge of core (would not expect M-seg.)

with D. Cole, J. Read 
& M. Wilkinson


