Overview of Dynamical Modeling

Glenn van de Ven glenn@mpia.de

Why dynamical modeling? -- mass

- o total mass stellar systems key is to their evolution
- compare luminous mass: constrain DM and/or IMF
- DM radial profile and shape agree with LCDM?
- central black hole mass

Ringberg Dynamics, 10.04.2012

Glenn van de Ven, "Overivew of Dynamical Modeling"

Why dynamical modeling? -- DF

- distribution function of (sub-)populations
- dynamical decomposition: bulge, disk, halo
- stellar merger/accretion conserved in phase-space
- o chemical tagging: growth of disk and bulge

Kinematic tracers: integrated spectra

- inner parts external galaxies & distant universe; random errors mostly limited by exposure time
- ø observed spectrum = stellar spectra ⊗ LOSVD line-of-sight velocity distr. moments: V, σ, h₃, h₄, ...
 - aperture: single value; physical size depends on z
 - long-slit: radial profile; multiplexing at high(er) z
 - integral-field spectroscopy: maps; uncover kinematical substructures, better constraints mass and DF

Kinematic tracers: discrete velocities

- outer parts external galaxies / groups & Local Group; random errors mostly limited by numbers $[d\sigma/\sigma=(2N)^{-1/2}]$
- observed spectrum of single, resolved object:
 - line-of-sight velocities (vlos): satellites, PNe, GCs, resolved stars
 - proper motions ($\mu_{\alpha} \& \mu_{\delta}$): Galactic GCs, dSph galaxies? direct measure of velocity anisotropy $\beta = 1 \sigma_{tan}^2/\sigma_{rad}^2$
 - plus distance $(α,δ,D,μ_α,μ_δ,v_{los})$: Milky Way stars

Kinematic tracers + chemical tags

- o chemical tags are true integrals of motion
- integrated spectra: break degeneracy multiple stellar populations; additional info from UV & FIR?
- resolved stars photometry: (rough) estimate [Fe/H]
- resolved stars spectra: [Fe/H], [a/Fe] age proxy; beyond requires expensive high spectral resolution

Liu & van de Ven (2012) Glenn van de Ven, "Overivew of Dynamical Modeling"

Modeling methods: virial mass

- Scalar virial theorem: $M = v_{RMS}^2 r_g / G$ Virial mass estimate: $M = \kappa \sigma_{los}^2 r_h / G$, $\kappa \neq constant$:
 - r_g/r_h depends on surface brightness distribution, mass-to-light ratio profile (incl. dark halo), viewing direction
 - ν_{RMS}/σ_{los} depends velocity anisotropy, (model beyond) radial extend kinematic tracers, viewing direction
- \circ still works due to insensitivity beyond $\sim r_h$, but dynamical modeling needed to go beyond single mass value

Modeling methods: Jeans equations

Velocity anisotropy? Axial symmetry? DF non-negative?

Modeling methods: distribution function

- Steady-state equilibrium: DF depends on 3 integrals of motion: energy E, second I2 = {L,Lz,Lx,...}, third I3 = ?
- Analytical DFs in literature, but specific forms assumed and I3 unknown (exception separable Stäckel potentials)
- Numerical DFs via mass weighted superposition of orbits (Schwarzschild's method) or tori fitted to obs. kinematics

Binney (2010), McMillan & Binney (2010)

Modeling methods: particles

- evolving, non-equilibrium systems with particle models:
 - asymmetric mass distribution: warps, lopsided, mergers
 - orotating components: bars and spiral arms
 - evolution particles and gravitational potential & stability
- but computationally expensive and unknown initial conditions
- Made-to-Measure N-body: vary particle masses to converge toward observations (Syer & Tremaine 1996)

de Lorenzi et al. (2007 Glenn van de Ven, "Overivew of Dynamical Modeling"

Inference: velocity moments

- integrated spectra:
 - now fit extracted moments or histogram LOSVD
 - fit spectra directly using observed/model stellar templates?
- ø discrete velocities:
 - better cleaning for non-members also removes more members
 - more spatial binning to extract higher-order velocity moments
 - tracer density from photometry, but often challenging corrections for incompleteness and selection biases

Glenn van de Ven, "Overivew of Dynamical Modeling"

Inference: discrete likelihood

- likelihood fitting discrete velocities
 - better spatial resolution; improve constraint (IM)BH?
 - non-members via background model in likelihood
 - computationally expensive; first constrain parameter range with simpler, faster (Jeans) models
- chemical tags
 - velocity moments: "hard cut" in e.g. [Fe/H]
 - discrete: additional chemical model in likelihood

This workshop: Dynamics meets kinematic tracers

- Kinematic tracers:
 Session 1 Hans-Walter Rix: What data can do for you
 Session 2 Discrete Data: incompleteness and selection effects
- Modeling methods:
 Session 1 James Binney: What models can do for you
 - Session 3 Modeling approaches: speed versus accuracy
- Session 4 Inference: the challenges of fitting models to data
- Session 5 Results 1: versatile dynamics Session 6 - Results 2: cores or cusps?
- Session 7: Next steps