















a











Detection of brown dwarfs

Unusual colours
 model predicted
 contamination by warmer stars and galaxies

Companions of nearby stars
 requires high contrast ratio with high angular resolution

High proper motions objects
 incomplete, bias towards older populations
 requires some patience and twice telescope time

Late type objects in young clusters
 known types, but lower gravity
 contamination by field stars









## Detection of extrasolar planets Imaging: direct detection => 1-4? Movements of the host star pulsar (1992,1994) Acceleration of the host star 198 (1995...) Occultation of the host star 14 (2004...) Gravitational lensing (microlensing) of a background star 4 (2004...)















Fundamental physics that we'll use

• quantum physics:
• degenerate gas
• light-matter interactions
• electromagnetism, radiation laws
• thermodynamics
• convection
• statistics

For extrasolar planets:
• Keplerian mechanics