Aktive Galaxien, Quasare, Schwarze Löcher

Vorlesung an der Universität Potsdam, SoSe 2005.

Dr. Knud Jahnke Astrophysikalisches Institut Potsdam,

Potsdam-Babelsberg, An der Sternwarte 16 Schwarzschild-Haus (AIP-Neubau), Raum 226

Telefon: (0331) 7499 310 email: kjahnke@aip.de

Priv.-Doz. Lutz Wisotzki Astrophysikalisches Institut Potsdam,

Potsdam-Babelsberg, An der Sternwarte 16 Schwarzschild-Haus (AIP-Neubau), Raum 223

Telefon: (0331) 7499 532 email: lwisotzki@aip.de

Webseite: http://www.aip.de/~jahnke/lectures/gqs_05

Vorläufiges Inhaltsverzeichnis

- 1. Einführung & phänomenologischer Überblick
- 2. Schwarze Löcher
- 3. Akkretion & Akkretionsscheiben
- 4. Strahlungsprozesse, Jets
- 5. AGN-Surveys: Ziele, Methoden, Resultate / Multifrequenzstudien
- 6. Quantitative Spektroskopie von AGN
- 7. Strukturbestimmung
- 8. Kosmologische Evolution von Kernaktivität in Galaxien
- 9. AGN-Muttergalaxien und -Umgebungen; Großräumige Verteilung

"Aktive Teilnahme"

Regelmäßige Teilnahme, aber keine Anwesenheitsliste

HörerInnen-Vorträge: Kurzer Vortrag, ca. 10 Minuten, zu Teilthema; Vertiefung, Randthema oder speziellen Aspekt aufarbeiten und darstellen (Folie, Powerpoint)

Aufwand: überschaubar, bei \geq einer Woche Vorlaufzeit

Material: selbständig recherchieren im WWW, evtl. AIP-Bibliothek mögliche Themen:

- Was ist die Eddington Akkretionsrate? (zu "Schwarze Löcher / Akkretion")
- Inverse Comptonstreuung (zu "Strahlungsprozesse")
- Klassifikation von Radiogalaxien (zu "Jets")
- Wie funktionieren Röntgenteleskope? (zu "AGN-Surveys")
- Was sind Lichtechomessungen? (zu "Strukturbestimmung")
- Was ist eine Leuchtkraftfunktion? (zu "Evolution")
- Sternspektren vs. Galaxienspektren (zu "AGN-Muttergalaxien")
- Massenbestimmung mit dem 3. Kepplerschen Gesetz (zu "AGN-Muttergalaxien")

• ..

Vortragsthemen (Vorschläge)

- Eddington Leuchtkraft: aus Ära vor AGN, Akkretion bei Sternen, Eddington accretion, Eddington luminosity, Kräftegleichgewicht, radiales Verhalten der Beschleunigungen
- Inverse Comptonstreuung: inverse Compton scattering, Compton scattering, Thomson scattering, Voraussetzungen, Energiebereich
- Klassifikation von Radiogalaxien: Fanaroff-Riley (FR) Typ I/II, steepspectrum, flat-spectrum radio galaxies (ssrg, fsrg), Bilder, Morphologien, physikalischer Hintergrund bekannt? Core, jets, lobes
- Wie funktionieren Röntgenteleskope: Chandra, XMM/Newton, ASCA, Constellation-X, Grundprinzip, Unterschied zu optischen Teleskopen, Abbildung, Größe der Photonen-Zählraten?
- Was sind Lichtecho-Messungen: Reverberation-Mapping, Prinzip, benötigt veränderliche AGN-Quelle, Beispiele, Strukturbestimmung (Brad M. Peterson), daraus resultierende Größen für Akkretionsscheibe, Broad Line Region, Narrow Line Region?
- Was ist eine Leuchtkraftfunktion: Luminosity function, Schechterfunktion, charakteristische Leuchtkraft/Magnitude, L^* , M^* , Leuchtkraftfunktion von Galaxien und Quasaren heute
- Sternspektren vs. Galaxienspektren: O, B,..., K-Stern-Spektren, Initial mass function, Überlagerung von Einzelsternen, leuchtkraftgewichtet, Galaxienspektrum, Vergleich mit "typischem" Sternspektrum
- Massenbestimmung mit dem 3. Kepplerschen Gesetz: Doppelsterne, Spiralgalaxien, Rotationskurve

I'm scanning all my radars well she said she's from a quasar fortythousand million light-years away

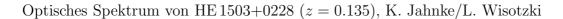
She's just a cosmic girl from another galaxy my heart's in zero gravity

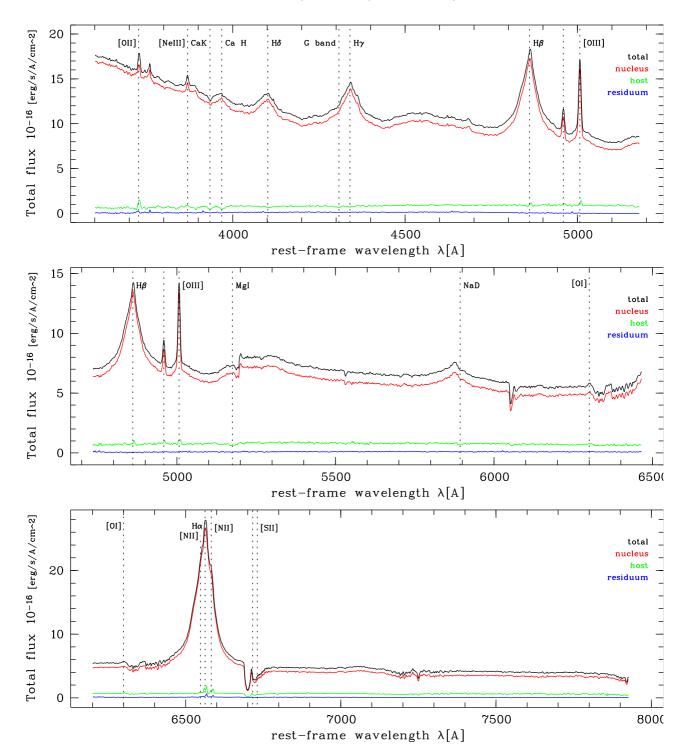
Jamiroquai, Cosmic girl, Travelling without moving, 1999

1. Einführung und Überblick

Historische Einordnung

Entdeckung und Identifikation von aktiven Galaxienkernen über hauptsächlich vier Phänomene:


Emissionslinienkerne in Galaxien: Erstmals 1930er Jahre (C. Seyfert) spektroskopische Entdeckung breiter (>1000 km/s) H α und H β -Emissionslinien in Zentralregionen einiger weniger naher Galaxien, z.B. NGC 4151. Inzwischen werden (meist schwache) aktive Kerne in $\sim 10\%$ der nahen großen Galaxien gefunden.

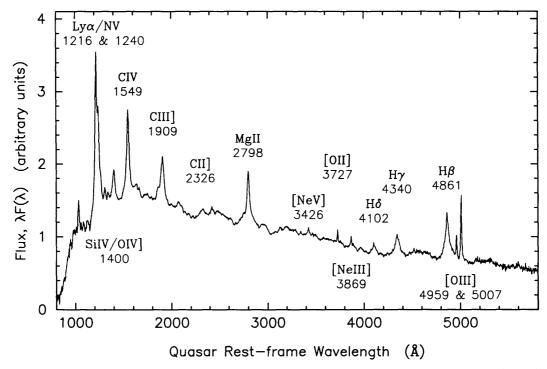
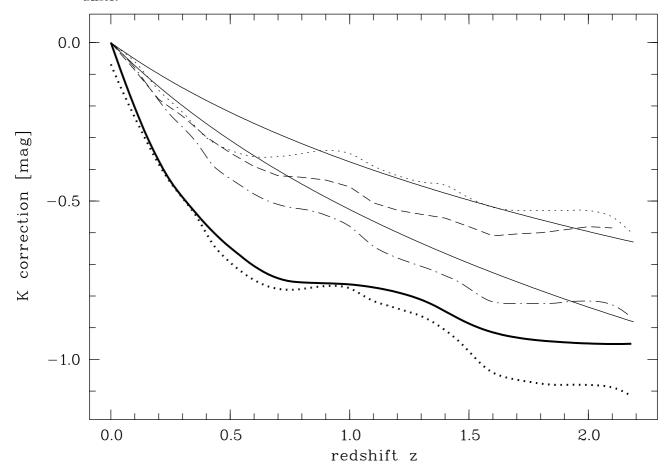
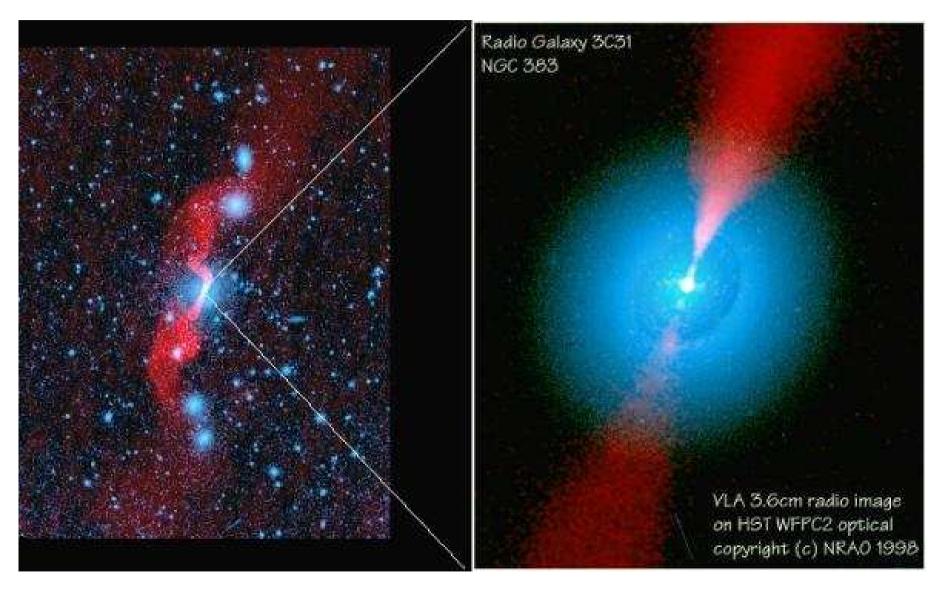

Radiogalaxien: Mit Entwicklung der Radioastronomie in 50er Jahren (speziell Interferometrie → genauere Positionen): Ausgedehnte Radioquellen, Strukturen aus Kern + Jet(s) + Halo (lobes), ausnahmslos in großen elliptischen Galaxien gelegen.

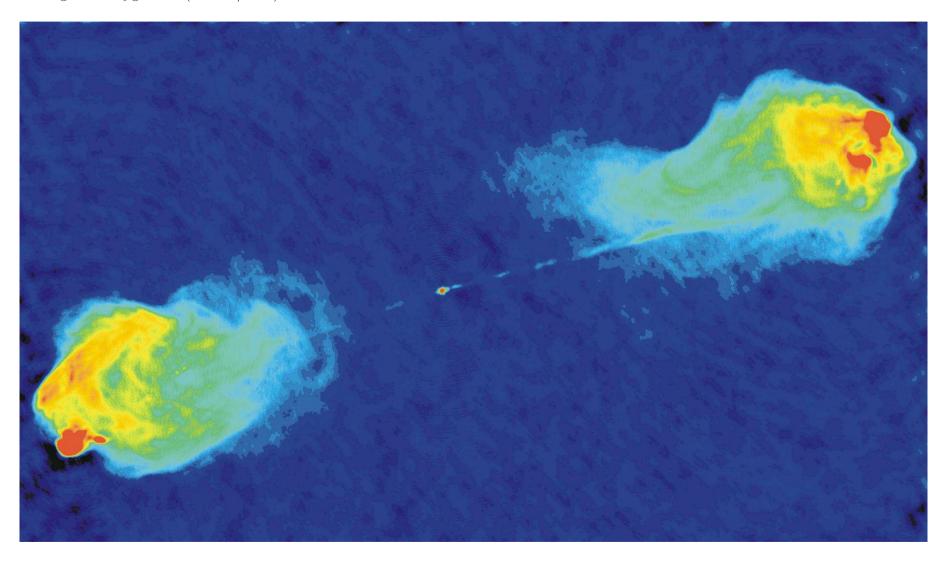
Quasare: Zunächst als quasi-punktförmige Gegenstücke zu einzelnen Radioquellen entdeckt, mit erheblichen Rotverschiebungen (frühe 60er Jahre). Später hauptsächlich als extrem blaue "UV-Exzeß-Objekte" gefunden, auch wenn keine starke Radiostrahlung nachweisbar ist.

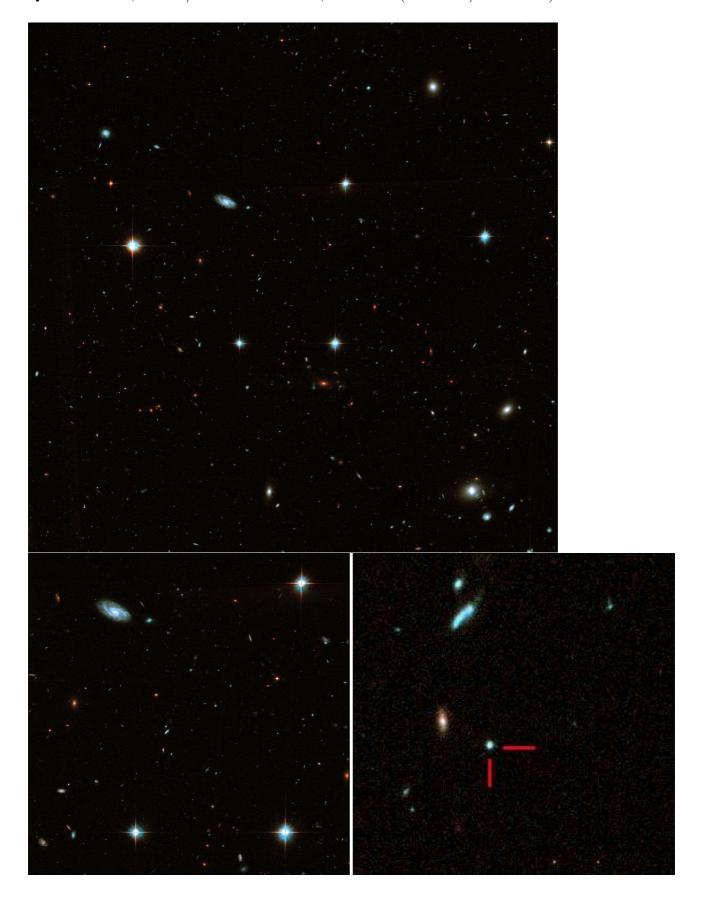
Extragalaktische Röntgenquellen: Entdeckung der "Röntgenhintergrundstrahlung" in 60er Jahren, mit Physik-Nobelpreis 2002 geehrt. Heutige Deutung: mindestens 80 % des Röntgenhintergrunds wird durch aktive Galaxienkerne bei hohen Rotverschiebungen erzeugt.

Diese vier Aspekte sind auch heute die Hauptansätze für systematische Durchmusterungen (surveys) nach aktiven Galaxienkernen.

Gemitteltes UV-optisches Spektrum (oben), K-Korrektur für verschiedene Filter (unten)

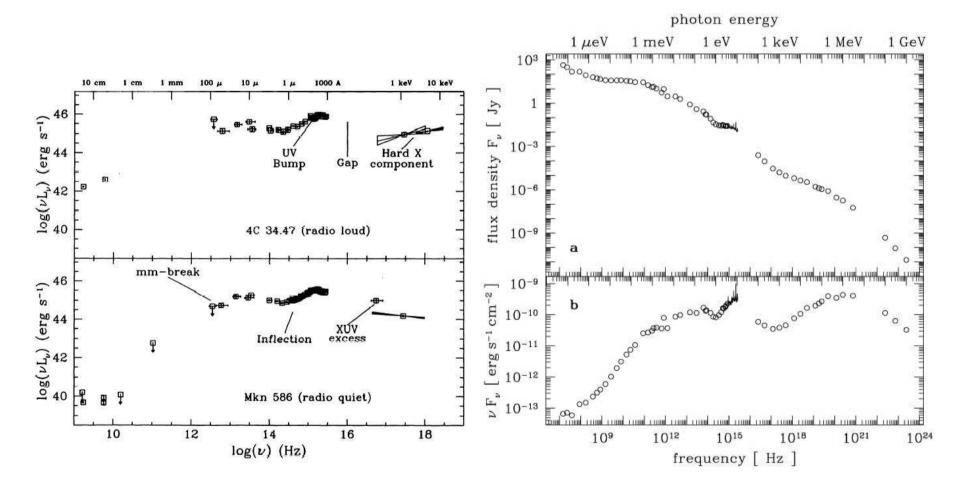

Fig. 2.—Composite spectrum plotted as $\lambda F(\lambda)$ vs. rest-frame wavelength with the principal emission features identified. The flux scale is in arbitrary units.


Radiogalaxie 3C31 (NRAO/AUI). Rot: radio, blau: optisch. Jetlänge 300 kpc

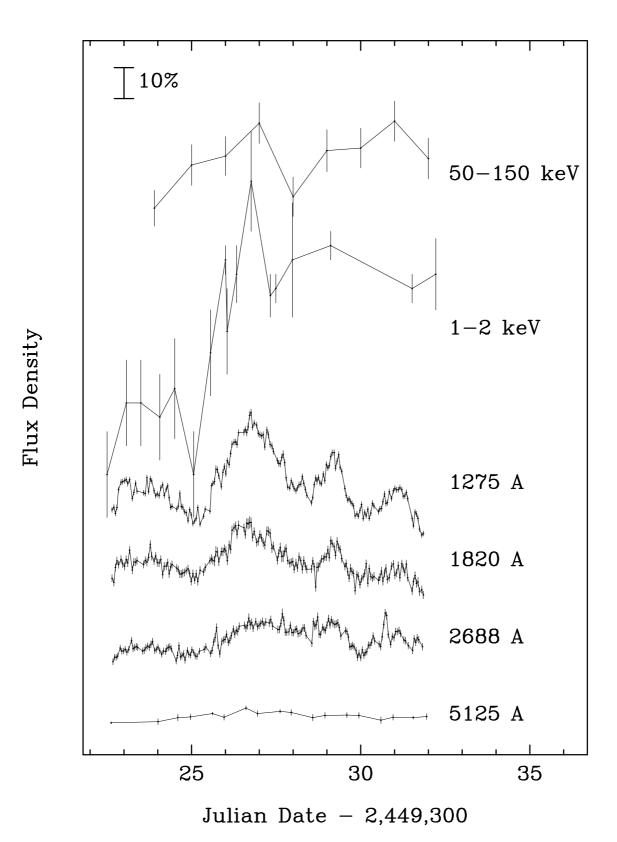
Radiogalaxie Cygnus A (NRAO/AUI)

QSO im CDFS, GEMS/COMBO-17 05696, z=2.386 (Rix et al./Wolf et al.)

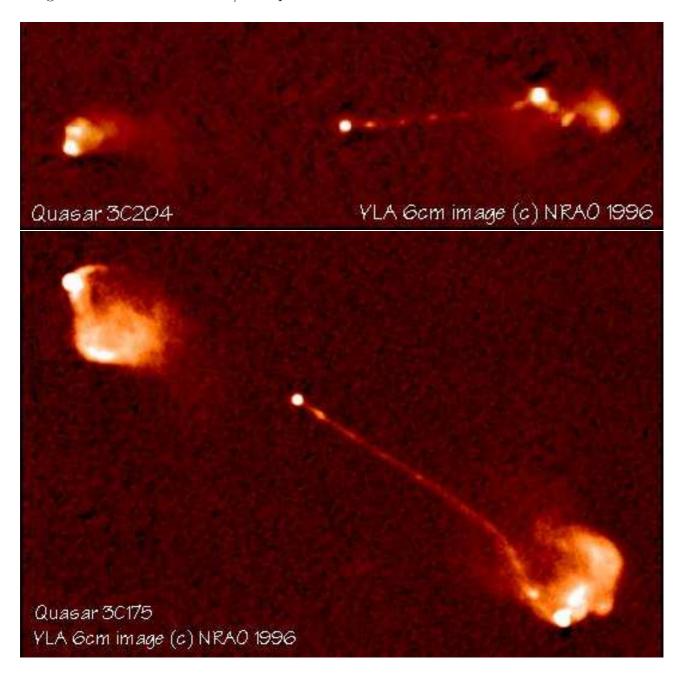
CDFS-Feld (CHANDRA, NASA/JHU/AUI/R. Giacconi et al.)



Phänomenologische Übersicht


Ausprägung von "Kernaktivität" auf sehr unterschiedlichen Niveaus möglich. Charakteristische Phänomene, deren Auftreten als hinreichend für Anwesenheit eines aktiven Kerns gewertet werden kann:

- Breite Emissionslinien: Linienbreiten zwischen ~ 1000 und $\sim 20\,000$ km/s (FWHM). Phänomen existiert i.allg. nur für erlaubte Linien (z.B. Rekombinationslinien wie H α). Verbotene Linien (z.B. [O III] $\lambda 5007$) sind nahezu immer schmal (FWHM $\lesssim 500$ km/s).
- Form des kontinuierlichen Spektrums: Noch nicht einmal grob durch Schwarzkörper darstellbar; überspannt etliche Oktaven, stückweise durch Potenzgesetz approximierbar $(F_{\nu} \propto \nu^{\alpha})$.
- Variabilität: Abstrahlung durch aktive Kerne nicht zeitkonstant; Variation auf allen Zeitskalen, Jahrhunderte bis Stunden (evtl noch kürzer). Hinweis auf kleine Quellendimensionen und relativistische Prozesse.
- Radioemission: Flächenhelligkeit im Radiobereich (Strahlungstemperatur) um Größenordnungen über dem für schwarze Körper möglichen. Starke Polarisation \rightarrow Synchrotronstrahlung hochrelativistischer Jets. Allerdings nur $<10\,\%$ der aktiven Galaxienkerne "radio-laut".


Keins dieser Phänomene ist ein *notwendiges* Kriterium für Kernaktivität, d.h. es gibt AGN ohne breite Emissionslinien, ohne Radio- oder Röntgenemission, usw. Wohl aber kann man notwendige physikalische Bedingungen für Kernaktivität formulieren – u.a. Thema dieser Vorlesung.

NGC 4151

Radiolaute Quasare 3C204 und 3C175 (NRAO/AUI). Länge der Radiostrukturen 160/220 kpc

Klassifikation von aktiven Galaxienkernen

AGN: Active Galactic Nuclei = Oberbegriff

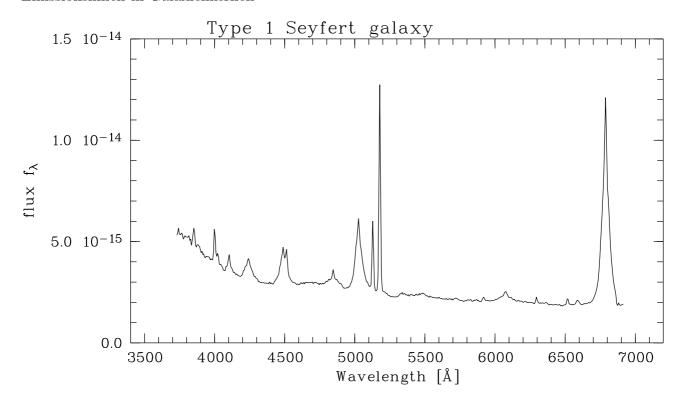
Aktive Galaxien: Galaxien mit kurzzeitig stark erhöhter Leuchtkraft (meist Starbursts); nur $\lesssim 10 \%$ davon sind AGN.

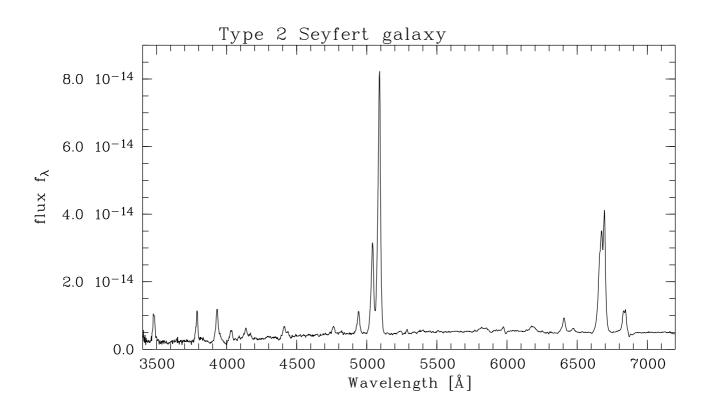
Seyfertgalaxien: Sy $1 \longleftrightarrow$ Sy 2; Sy 1.5 / 1.8 / 1.9 je nach Vorkommen von breiten und schmalen Emissionslinien.

radio-laut (RLQ) \longleftrightarrow radio-leise (RQQ); radio-mittel? **Quasare (QSOs):** RLQ-Untertypen: steep-spectrum und flat-spectrum Quasare Typ 1 \longleftrightarrow Typ 2 (?)

Radiogalaxien (RG): $\frac{\text{Fanaroff-Riley (FR) Typ I} \longleftrightarrow \text{FR II}}{\text{Broad / Narrow Lines (BLRG} \longleftrightarrow \text{NLRG)}}$

LINERs: (Low Ionization Nuclear Emission Region galaxies)

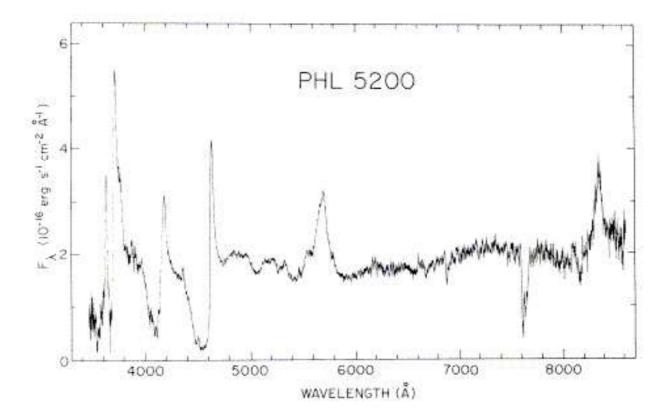

BL Lac-Objekte (nach Prototyp BL Lacertae), und Untertypen


Blazare: Optically Violent Variables (OVVs)
High Polarization QSOs (HPQs)

BAL-Quasare: (Broad Absorption Lines): etwa 10–20 % aller RQQ

ULIRGs: (Ultra-Luminous Infra-Red Galaxies): $\lesssim 30-50 \%$ enthält AGN

Emissionslinien in Galaxienkernen



Quasare mit aufgelöster Wirtsgalaxie, HST (Bahcall et al. 1997)

5.0"	10 kpc N	10 kpc	
Star	PG 0052+251	PHL 909	
10 kpc	10 kpc N√E	10 kpc	
NAB 0205+02	0316-346	PG 0923+201	
10 kpc EN	10 kpc	10 kpc N	
PG 0953+414	PKS 1004+130	PG 1012+008	
10 kpc	10 kpc N	10 kpc	
HE 1029-140	PG 1116+215	PG 1202+281	

Broad Absorption Line (BAL) Quasar Spektrum

Lineardimensionen

Für Feld-, Wald- & Wiesenquasar:

	metrische Ausdehnung	Winkels $z = 0.1$	größe bei $z=2$
• Muttergalaxie	$10~{\rm kpc}$	4"	1"
• Narrow Emission Line Region	$1~{\rm kpc}$	0."4	0."1
• Broad Emission Line Region	1 pc	0."0004	0."0001
 Akkretionsscheibe 	$0.01~\mathrm{pc}$	$4 \mu as$	$1 \mu as$
• R_S für $M=10^9M_\odot$	10^{-4} pc	$0.04~\mu{\rm as}$	$0.01~\mu as$
		$(H_0 = 50, \Omega_m =$	$=1, \Lambda=0$

Maße, Einheiten, Konventionen

Strahlungsstrom:

$$f_{\lambda} [\text{erg s}^{-1} \text{ cm}^{-2} \text{ Å}^{-1}] (\text{cgs}) \text{ bzw. [W m}^{-2} \text{ nm}^{-1}] (\text{SI})$$

 $f_{\nu} [\text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}]; 1 \text{ Jy} \equiv 10^{-23} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$
 $f_{\nu} = f_{\lambda} \cdot \lambda^{2}/c.$

Magnituden:

Relative logarithmische Größe, verschiedene Nullpunkt-Systeme:

1. Vega-System (A0-Sterne haben in allen Bändern gleiche Mag.) Umrechung von f_{λ} in Magnituden erfordert separate Nullpunkte für jedes Band; z.B. für Johnson-System (Strahlungsströme in cgs):

$$U = -2.5 \log f_{3600} - 21.29$$

$$B = -2.5 \log f_{4400} - 20.42$$

$$V = -2.5 \log f_{5550} - 21.17$$

2. AB-System: feste Umrechnungskonstante

$$m_{AB} = -2.5 \log f_{\nu} - 48.60$$

Leuchtkraft & absolute Helligkeit:

Def. Leuchtkraft: $L = 4\pi d_L^2 \int f_\lambda d\lambda$ (bolometrische Größe)

Leuchtkraft pro Einheits-Frequenzband: $\nu F_{\nu} = \lambda F_{\lambda} = 4\pi d_L^2 \lambda f_{\lambda}$

Häufig benutzt: 1 Sonnenleuchtkraft $L_{\odot} = 3.85 \times 10^{33} \text{ erg s}^{-1}$.

Absolute Helligkeiten: $M_{V,\odot} = 4.8$; $M_{\text{bol},\odot} = 4.72$.

Literatur zur Vorlesung

Lehrbücher und Monographien

Bradley M. Peterson: An Introduction into Active Galactic Nuclei, Cambridge University Press, 1997.

Weitgehend aus Beobachterperspektive geschriebenes Einführungswerk, guter Überblick, aus Platzgründen oft sehr oberflächlich in der Behandlung der physikalischen Prozesse.

Julian H. Krolik: Active Galactic Nuclei,

Princeton Series in Astrophysics, 1999.

Anspruchsvolleres (und umfangreicheres) Lehrbuch eines bekannten AGN-Theoretikers; sehr gut vor allem bei der Behandlung von Strahlungsprozessen und Akkretionsscheibenphysik.

Ajit K. Kembhavi und Jayant V. Narlikar: Quasars and Active Galactic Nuclei, Cambridge University Press, 1999.

Umfassendes Lehrbuch, mit Überblick über die wichtigsten physikalischen Prozesse **und** einer sehr aktuellen Darstellung des Stands der Beobachtungen. Etwas störend am Ende: die Betrachtungen zur nichtkosmologischen Interpretation der Quasarrotverschiebung.

Ian Robson: Active Galactic Nuclei

Wiley-Praxis Series, 1996

Sehr elementare Einführung; nicht ausreichend für das Niveau dieser Vorlesung

R.D. Blandford, H. Netzer, L. Woltjer: Active Galactic Nuclei

Lecture Notes, Saas-Fee Advanced Course 20, Springer-Verlag, 1990

Fortgeschrittene Einführungstexte. Nicht mehr ganz aktuell, aber die Beiträge von Netzer und Blandford sind immer noch außerordentlich lesenswert.

Daniel W. Weedman: Quasar Astronomy

Cambridge University Press, 1986.

Heroischer Versuch, ein sich rasend schnell entwickelndes Gebiet in einem Lehrbuch zu erfassen. Das meiste ist inzwischen überholt, aber das Kapitel über AGN-relevante Aspekte der Kosmologie ist ausgezeichnet, und die kosmologische Formelsammlung ist nach wie vor unerreicht.

Eric Weisstein's World of Astronomy

http://scienceworld.wolfram.com/astronomy/ Brauchbare aber noch wachsende Ressource als Nachschlagewerk. Ist noch nicht in alles Bereichen vollständig.

astro-ph: **Preprintserver**

http://de.arxiv.org

Der offizielle Preprintserver für astronomische Artikel. Frei zugänglich.