Quasarmodelle

Zur Energiebilanz in AGN

Betrachte zwei charakteristische Fälle:

3C 273: Hellster bekannter Quasar.

$$z = 0.158 \Rightarrow d_L = 1.06 \,\text{Gpc}, \, m - M = 40.1, \, K(z) \simeq -0.3;$$

 $V = 12.8 \Rightarrow M_V = -27.0; \, L(V) = 5 \times 10^{12} L_{\odot}.$
 $\Rightarrow \sim 50 \,\text{fach leuchtkr\"{a}ftiger}$ als hellste Galaxien $(M_V \simeq -23).$

NGC 5548: Nahe Seyfert 1-Galaxie.

$$z = 0.017 \Rightarrow d_L = 102 \,\mathrm{Mpc}, \ m - M = 35.0, \ K(z) \simeq 0;$$

 $V = 13.5 \Rightarrow M_V = -21.5; \ L(V) = 3 \times 10^{10} L_{\odot}.$
 \Rightarrow vergleichbar mit ganzer Milchstraße ($M_V \simeq -22$).

Bolometrische Leuchtkräfte jeweils um Faktor ~ 5 –10 höher

Energiequelle: vermutlich Akkretion auf ein kompaktes Zentralobjekt

Argument: Nutze Reservoir aus *potentieller* Energie in Muttergalaxie; Umwandlung in thermische Energie durch Reibung.

Betrachte Probeteilchen mit Masse m in Entfernung r von Zentralmasse M. Für schwarze Löcher: $r > r_s = 2GM/c^2$ (Schwarzschildradius).

Nichtrelativistische Abschätzung: Massenzuwachs durch Akkretion mit Rate \dot{M} von $r = \infty$ auf Endradius $r > r_s$ liefert:

$$L \approx \frac{GM\dot{M}}{r}$$

In Analogie zur Energieerzeugung durch Kernfusion:

$$L = \eta \dot{M}c^2$$
 mit $\eta \simeq GM/rc^2$.

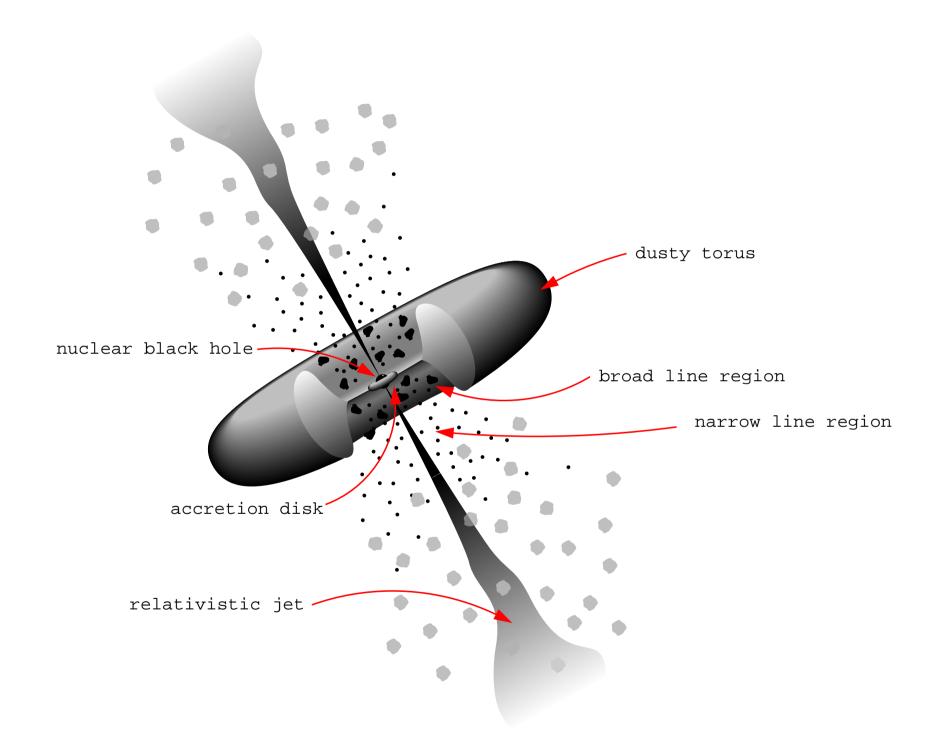
Großteil der Leuchtkraft kommt i.d.R. aus Bereich $r \simeq 5 \dots 10r_s$ $\Rightarrow \eta \simeq 0.05 \dots 0.1$ (bestätigt in genaueren Rechnungen)

Akkretionsrate bei 3C 273: $\sim 20 M_{\odot} \text{ yr}^{-1}$; bei NGC 5548: $\sim 0.5 M_{\odot} \text{ yr}^{-1}$.

Quasarmodelle: Zutaten

Ansatz: Vereinheitlichung des AGN-Zoos durch Konzentration auf wesentliche Parameter. Ziel: Ein Basismodell für (fast) alle Typen.

- Zentrales schwarzes Loch Masse $\sim 10^6 \dots 10^{10} M_{\odot}$. Vermutlich mehr oder weniger schnell rotierend.
- Akkretionsscheibe: Einfließende Materie hat geordneten Eigendrehimpuls, deshalb ist sphärische Akkretion unplausibel: Ausbildung einer Vorzugsebene (in Hauptebene der Muttergalaxie???).
 Viskose Heizung der Scheibe ⇒ Thermische Kontinuumsemission im optischen/UV/weichen Röntgenbereich (d.h. Temperatur ~ 10⁵ K).
- Jets: Ein (kleiner) Teil der akkretieren Materie wird wieder ausgeworfen beschleunigt, gebündelt & \sim senkrecht zur Scheibenebene:
 - ⇒ Synchrotron-Radioemission; hochenergetische Strahlung.
- Warme Gaswolken: Um Akkretionsscheibe herum bewegen sich Wolken mit bis zu $\sim 10\,000\,\mathrm{km/s} \Rightarrow \mathrm{Broad\text{-}Line}$ Region.
- Staubtorus (o.ä.): Außenzone der Akkretionsscheibe nicht transparent für opt/UV-Strahlung;
 - \Rightarrow Abschattung der BLR in Sy 2-Galaxien; Re-Emission der absorbierten Strahlung im Infraroten.
- Ionisiertes Gas in Muttergalaxie Quasarstrahlung enthält große Mengen von UV-Photonen, kann große Bereiche des interstellaren Mediums in Muttergalaxie ionsieren → Narrow-Line Region, Extended Narrow-Line Region, schmale Emissionslinien in Muttergalaxie



Verbotene vs. erlaubte Übergänge

- Erlaubter Übergang: Dipolübergang vorhanden \rightarrow hohe Übergangswahrscheinlichkeiten \rightarrow Strahlungsabregung passiert schnell (Linien: z.B. Ly α , H α , H β , C IV,...)
- Verbotener Übergang: verstößt gegen $\Delta S = 0$ (und eine weitere) Auswahlregel \rightarrow nur Übergänge höherer Momente (Quadrupol,...) \rightarrow Übergangswahrscheinlichkeiten klein (10^{-9} – 10^{-10}) \rightarrow wenn stoßangeregt dann relativ lang stabil (Voraussetzung: kleine Dichten)
- **Halbverbotener Übergang:** "Interkombinationslinien", $\Delta S \neq 0 \rightarrow$ Übergangswahrscheinlichkeiten $\sim 10^{-6}$
- Bereiche nahe des Kerns: Hohe Geschwindigkeiten, hohe Dichten \to breite Linien \to "Broad Line Region"

Erlaubte, halbverbotene Übergänge möglich, erzeugen Linien, verbotene Übergänge werden durch hohe Dichten wieder $Stoßabgeregt \rightarrow$ keine verbotenen Linien

Bereiche weiter außen: Niedrigere Geschwindigkeiten, niedrigere Dichten

→ schmale Linien → "Narrow Line Region"

Erlaubte, halbverbotene Übergänge möglich, durch geringe Dichten werden verbotene Übergänge nicht mehr stoßabgeregt \to auch verbote Linien

→ verbotene Übergänge erscheinen immer als schmale Linien, erlaubte/hal verbotene Übergänge als breite oder schmale, je nach Entfernung vom Kern

Klassifikationsrelevante Parameter

- Zentralmasse und Akkretionsrate:
 - 1. LINERs \longleftrightarrow Seyfert 1 \longleftrightarrow Quasare
 - 2. Radiolaute \longleftrightarrow Radioleise Quasare?
- Eigendrehimpuls des schwarzen Lochs:
 - 1. Radiolaute \longleftrightarrow Radioleise AGN? (unsicher)
 - 2. Bündelung der Jets?
- Orientierungswinkel zum Beobachter:
 - 1. Seyfert $1 \longleftrightarrow$ Seyfert 2 -auch QSO $1 \longleftrightarrow$ QSO 2? (Abschattung der BLR durch Torus)
 - 2. Radiolaute Quasare ←→ Radiogalaxien (Abschattung des Kerns durch Torus)
 - 3. BAL-Quasare ←→ nicht-BAL-Quasare (Abdeckung des Kerns durch BAL-Wolken/-Winde)
 - 4. Blazare ←→ nicht-Blazare (Winkel relativ zur Jetachse)

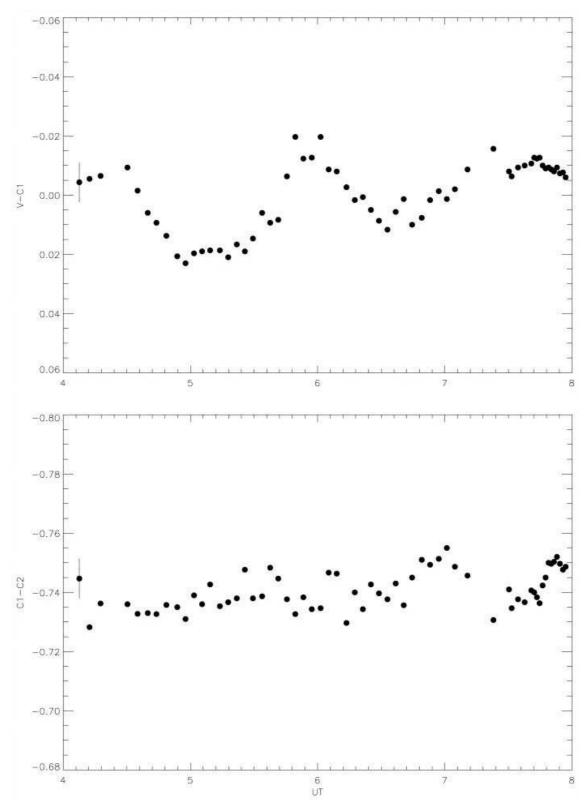
Alternative Klassifikationskonzepte existieren – vor allem solche, die verschiedene AGN-Typen entlang einer Entwicklungssequenz aufreihen.

Schwarze Löcher in AGN

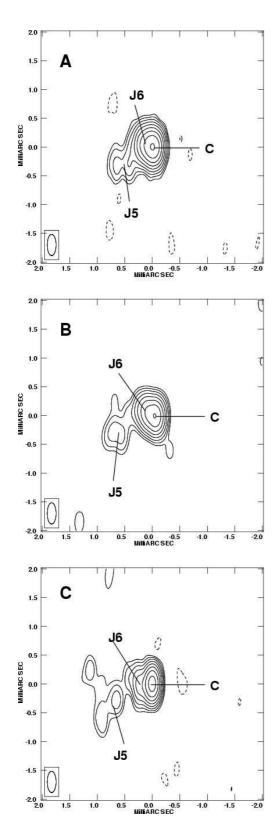
Hypothese superschwerer schwarzer Löcher (BH) in AGN: 10 Hinweise

- 1. Variabilität der AGN (Rees 1977): bis unter 1 min für einige Seyfertgalaxien
 - \rightarrow Lichtlaufzeit für \simeq Schwarzschildradius bei $10^7~M_{\odot}$ Variabilität-Zeitskala skaliert mit AGN-Leuchtkraft
- 2. Effizienz der Energieerzeugung: hohe Leuchtkräfte der Quasare $\to L \simeq \eta \dot{M}c^2 \to \eta \lesssim 0.1$ bei Akkretion auf BH (zum Vergleich: 10^{-10} bei chem. Reakt.; 10^{-3} bei H-He Fusion)
- 3. Massen: $L \approx GM\dot{M}/r \rightarrow$ um Quasar-Leuchtkräfte zu erreichen, werden "kompakte Zentralobjekte" in Galaxienkernen bis zu $\sim 10^{10}\,M_{\odot}$ benötigt.
- 4. Scheinbare Überlichtgeschwindigkeit der Jets:
 - $\rightarrow v \simeq c,$ relativistisch tiefer Potentialtopf
- 5. Radioquellen/-Jets: \rightarrow konstante Ausrichtung $> 10^6$ Jahre, andere Ursachen (Supernovae etc.) scheiden aus
- 6. Geschwindigkeitsdispersion der Sterne nahe des Kerns: $\simeq 10^{-3}c$
- 7. Breite Emissionslinien: optisch und Röntgen (MCG 6-30-15 und andere) \rightarrow bis zu $\sim 10\,\%$ $c \rightarrow$ relativistische Bewegung der Quelle
- 8. Statistische Evidenz: Schwarze Löcher in allen Galaxien mit signifikanter Sphäroid-Komponente (→ Vorlesung "Extragalaktische Astrophysik"), ~0.12 % der Gesamtmasse des Sphäroids
- 9. Theoretisch-physikalisches Argument (Rees 1984): Zeitentwicklung eines extrem kompakten Sternhaufens führt zur Entstehung eines massereichen schwarzen Lochs
- 10. Rotationsquelle: Schwarze Löcher in einigen wenigen Galaxien (Milchstraße, NGC 4258) fast zweifelsfrei nachgewiesen (Massen $10^6 \dots 10^7 M_{\odot}$)

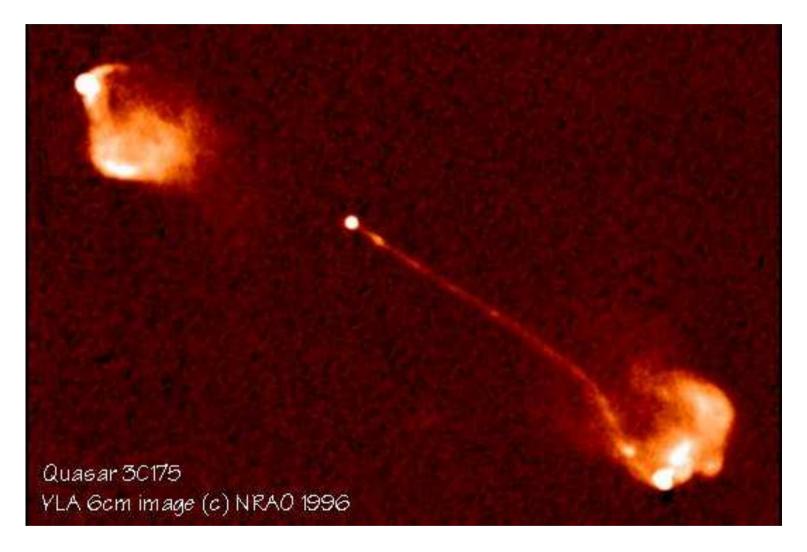
Die Frage nach der Entstehung der massereichen schwarzen Löcher in Galaxienkernen ist noch weitgehend ungeklärt. Im wesentlichen zwei Optionen: Ausbildung der schwarzen Löcher bereits in der Anfangsphase der Galaxienentstehung, oder langsames Wachstum aus stellaren schwarzen Löchern?



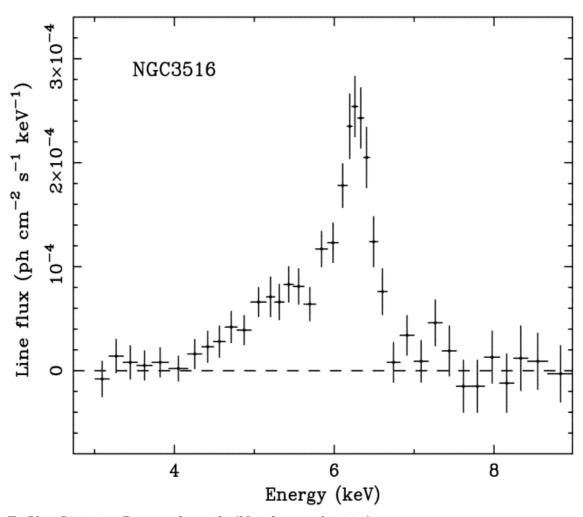
Vergleich Ark 120–Stern (oben) zu Stern 1–Stern 2 (unten) (Carini et al. 2003, AJ, 124, 1811)



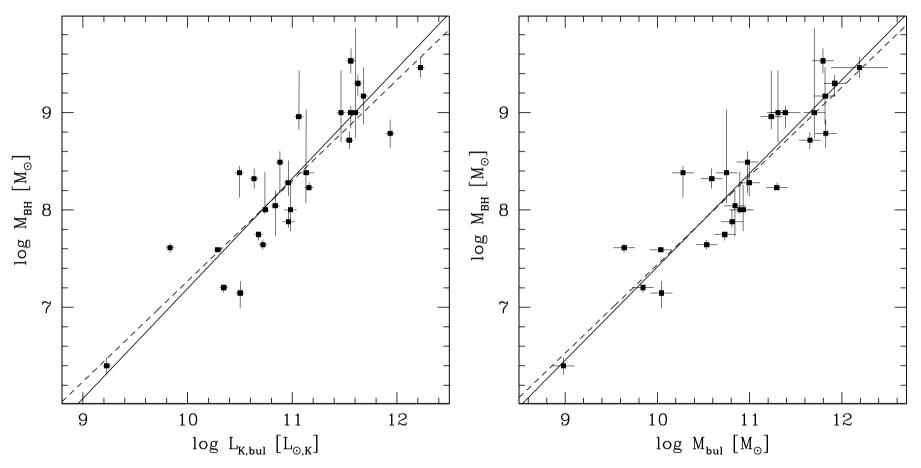
"Überlichtgeschwindigkeit" bei Radioquellen: PKS 1502+106 (An et al. 2005, 2004, A&A, 421, 839)



Radioquasar 3C 175, Länge der Radiostruktur > 300Lichtjahre (einseitig) (NRAO/AUI)



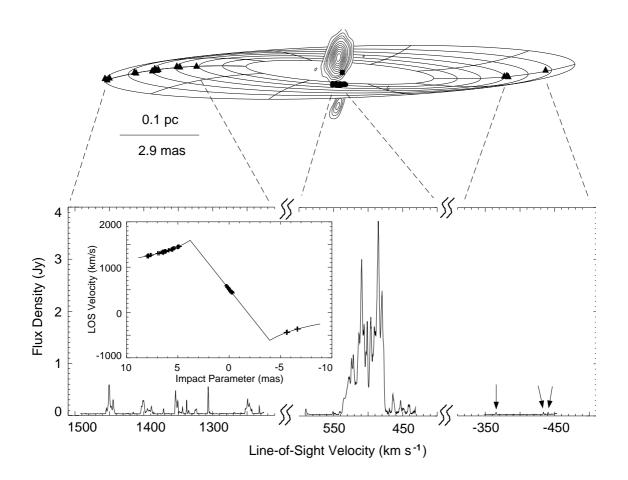
Fe K α Linie im Röntgenbereich (Nandra et al. 1999)



Bulge–BH Massenbeziehung (Marconi & Hunt 2003)

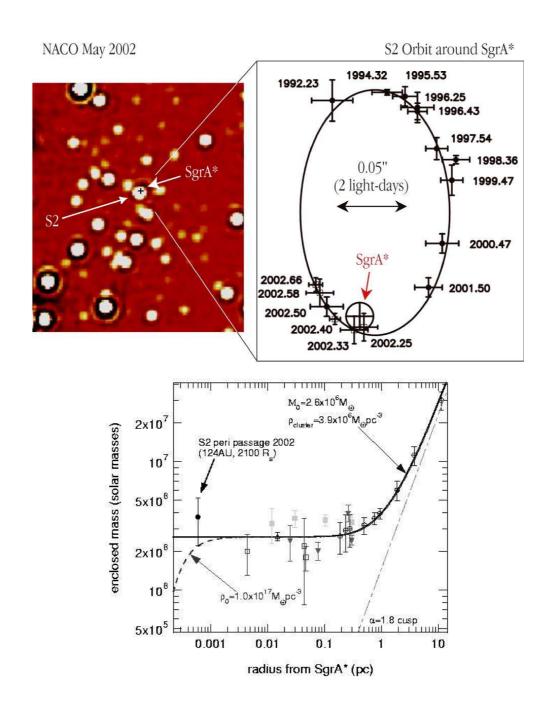
NGC 4258: H₂O-Maser (22 GHz), Auflösung 0″.0006 (\sim 0.017 pc) Rotationskurve der nuklearen Scheibe (Herrnstein et al. 1999):

- $\longrightarrow M(r < 0.13) \text{ pc} = 3.3 \times 10^7 M_{\odot}$
- \longrightarrow perfekt Kepler'sch! \longrightarrow Masse konzentriert < 0.012 pc



(Herrnstein et al. 1999, Nature)

$Milchstra\beta e$: stellare Eigenbewegung (Schödel et al. 2002): $\longrightarrow M_{GC}(r < 17 \text{ lh}) = (3.7 \pm 1.5) \times 10^6 M_{\odot}$



(Schödel et al. 2002, Nature + ESO PR23c/02)'

Schwarze Löcher – Grundlagen

Schwarzes Loch, Definition:

- Lösung zu allgemein relativistischer Feldgleichung mit asymptotisch flacher Raumzeit und Ereignishorizont
- Horizont: trennt sichtbare Ereignisse von unsichtbaren, umschließt Singularität der klassischen Physik
- "cosmic censorship": Singularität immer unbeobachtbar

Schwarzes Loch, Parameter:

"no hair"-Theorem \rightarrow einzige Parameter:

- Masse M, Drehimpuls a = J/Mc, Ladung q

Radius des Ereignishorizonts (Konvention: G = 1, c = 1):

$$r_h = M + \sqrt{M^2 - a^2}$$

a=0: Schwarzschildradius, $r_s=2M$

a = 1: "Gravitationsradius", $r_g = M$

 $\,\longrightarrow\,$ Metrik beschrieben durch Boyer-Lindquist-Koordinaten:

$$ds^{2} = \alpha^{2}c^{2}dt^{2} - \tilde{\omega}^{2}(d\phi - \omega dt)^{2} - (\rho^{2}/\Delta)dr^{2} - \rho^{2}d\theta^{2}$$

$$\rho^{2} \equiv r^{2} + a^{2} \cos^{2} \theta, \qquad \Delta \equiv r^{2} - 2GMr/c^{2} + a^{2}$$

$$\Sigma^{2} \equiv (r^{2} + a^{2})^{2} - a^{2} \Delta \sin^{2} \theta, \qquad \tilde{\omega} \equiv (\Sigma/\rho) \sin \theta$$

$$\omega(r,\theta) \equiv 2aGMr/c\Sigma^2, \qquad \alpha(r,\theta) \equiv \rho\sqrt{\Delta}/\Sigma$$

"frame-dragging" ω : Raum-Winkelgeschwindigkeit \equiv ZAMO-Winkelgeschwindigkeit, $\omega = (d\phi/dt)_{\rm ZAMO}$ (Zero Angular Momentum Observer)

"red-shift, time lapse" $\alpha :$ Gravitative Zeitverzögerung, Gravitationsrotverschiebung

(ZAMO-Eigenzeit $\tau \leftrightarrow$ globale Zeit $t,\,\alpha = (d\tau/dt)_{\rm ZAMO})$

Für nicht-rotierendes Schwarzschild BH: $a=0,\,d\phi=0,\,d\theta=0$

$$ho^2 = r^2, \qquad \Delta = r^2 - 2GMr/c^2$$
 $\Sigma = r^2, \qquad \tilde{\omega} = r\sin\theta$

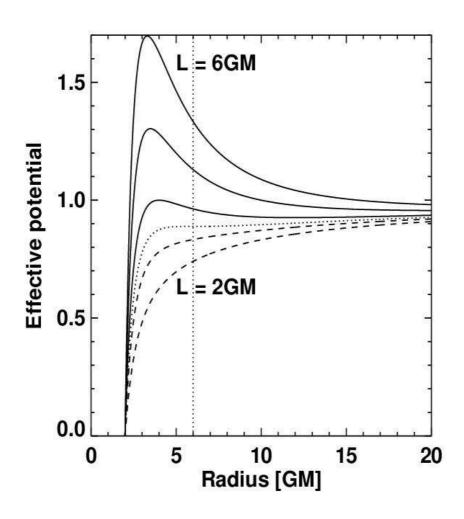
$$\omega(r,\theta) = 0,$$
 $\alpha(r,\theta) = \sqrt{1 - 2GM/rc^2}$

$$\begin{split} ds^2 &= \alpha^2 c^2 dt^2 - \tilde{\omega}^2 (d\phi - \omega dt)^2 - (\rho^2/\Delta) dr^2 - \rho^2 d\theta^2 \\ \Rightarrow ds^2 &= (c^2 - 2GM/r) dt^2 - (1/(1 - 2GM/rc^2)) dr^2 \\ \text{(Schwarzschild-Koordinaten)} \end{split}$$

Orbits um schwarze Löcher:

Schwarzschild-Metrik: \rightarrow unabhängig von t, ϕ

- Energie- (E) und Drehimpuls (L)-Erhaltung
- Bewegungsgleichung (vgl. mit Newton'schem Fall) $\dot{r} \equiv dr/d\tau = -\sqrt{\tilde{E}^2 V(r)}$ $V(r) = (1 2M/r)(1 + \tilde{L}^2/r^2) \text{ effektives Potential}$
- Stabile Kreisorbits bei Radien, die V(r) minimieren Aber: Orbits nicht geschlossen für $\tilde{E} > \sqrt{2V(r_{\min})}$
- Instabile Kreisorbits bei Radien, die V(r) maximieren Kleinster stabiler Orbit bei $r_{\rm ms}=3r_s,\,(1-\tilde{E}_{\rm ms})=0.057$



Kerr-Metrik:

Für
$$a = 1$$
: $r_{\text{ms}} = r_g$ (direkt), $r_{\text{ms}} = 9r_g$ (retrograd)

Ergosphäre rotierender schwarzer Löcher:

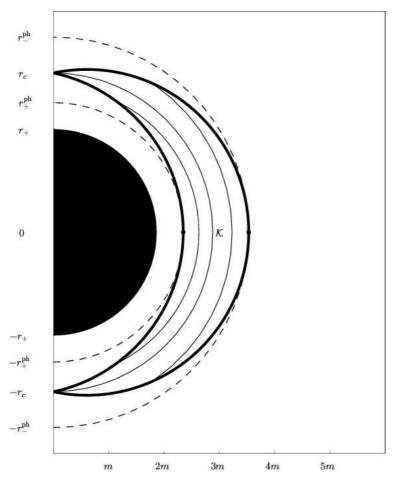
 \rightarrow Kerr-Metrik

Stationäre Beobachter, (r, θ) fest, Rotation $\Omega = d\phi/dt$

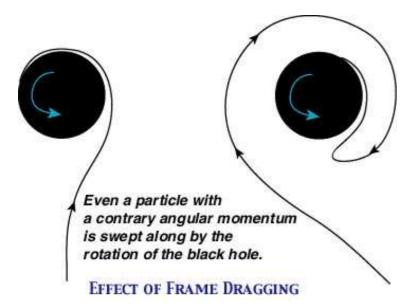
- Aus $u^{\alpha}u_{\alpha}=-1$ (Vierergeschwindigkeit) folgt: $\Omega_{\min}<\Omega<\Omega_{\max}$
- Für rotierendes BH: $\Omega_{\min} > 0$ oder $r < r_E = M + \sqrt{M^2 a^2 \cos^2 \theta}$ für $r \to r_h$: $\Omega_{\min} = \Omega_{\max} = \Omega_h = a/(r_h^2 + a^2)$

Ergosphäre: Region zwischen r_h und r_E :

- "static limit" r_E : Beobachter **muß** mitrotieren
- Orbits $r < r_h$ möglich mit negativer Gesamtenergie, Teilchen mit $\tilde{E} < 0$ kann Loch-Masse reduzieren!
- Irreduzible Masse (Hawking): $M_{\rm irr} = \sqrt{Mr_h/2}, \, \Omega_h < 1/\sqrt{8}M_{\rm irr}$
- $-M-M_{\rm irr} < 0.29M$ Energiegewinn aus rotierendem BH



Ergosphäre (Perlik, 2004)



Frame Dragging (Sochichi Uchii)