"Chemistry in the Universe"

Dmitry Semenov MPIA Heidelberg

http://www.mpia-hd.mpg.de/~semenov/

Outline

- Molecules in space
- Different ways to detect molecules
- Chemical processes in space
- Chemistry in the early Universe
- Physics and chemistry of the interstellar medium
- Physics and chemistry of protoplanetary disks

Background reading

- S. Kwok, "Physics and Chemistry of the Interstellar Medium" (2006)
- A. G.G.M. Tielens, "The Physics and Chemistry of the ISM" (2007)
- Master course in Astrochemistry, Ewine van Dischoek (2011) <u>http://www.strw.leidenuniv.nl/~sanjose/astrochem</u>
- E. Herbst & E. van Dishoeck, "Complex Organic Interstellar Molecules" (2009), Annual Rev. in Astron. & Astrophys., 47, 427
- "Protostars & Planets V" (2007), Part VI, eds. B. Reipurt et al., Univ. Arizona P.

Astronomical units

- | pc = parsec = 206,265 AU = 3.086 x 10¹⁸ cm
- | Å = 10⁻⁸ cm = 10 nm
- $I = I.602 \times 10^{-12} erg$
- I Debye = 10^{-18} esu cm
- | year = $3.1536 \times 10^7 s$
- $M_{sun} = solar mass = 1.99 \times 10^{33} g$
- I L_{sun} = solar luminosity = 3.90 x 10³³ erg s⁻¹
- I Jansky = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹
- Proton mass = $1.6726 \times 10^{-24} g$
- Boltzmann's constant = $1.3807 \times 10^{-16} \text{ erg K}^{-1}$
- Planck's constant = 6.6261×10^{-27} erg s

Lecture I: Introduction to astrochemistry

What is "astrochemistry"?

- "Study of formation and destruction of molecules in the Universe, their interaction with radiation, and their feedback on physics of the environments"
- Interdisciplinary field: chemistry + physics + astronomy (+biology?)
- Observations + theoretical astrophysics and chemistry + laboratory experiments

What is a "molecule"?

- From Latin word "moles" (small unit of mass)
- An electrically neutral complex of two or more atoms held together by covalent chemical bonds
- Chemical bond = electrostatic force (e⁻ and p⁺, dipole attraction)
- Smallest molecule is H₂ (0.74 Å)

Typical bond energies

C≡O	Carbon monoxide	11.16 eV
$H-C \equiv C-H$	Acetylene	10.07 eV
$N \equiv N$	Nitrogen	9.71 eV
C≡N	Cyanogen	7.77 eV
O=C=O	Carbon dioxide	5.50 eV
O=0	Oxygen	5.11 eV
H–O–H	Water	5.11 eV
NH ₃	Ammonia	4.58 eV
CH ₄	Methane	4.49 eV
H_H	Hydrogen	4.478 eV
O-H	Hydroxyl	4.41 eV

Molecules are everywhere!

- Early Universe
- High-z quasars and galaxies
- Milky Way: interstellar and circumstellar medium
- Solar system: solar photosphere, planetary atmospheres, comets, meteorites

Physical conditions in various astrophysical objects

- Interstellar medium: $T_{kin} \sim 10 100 \text{ K}$, n $\sim 10^2 10^8 \text{ cm}^{-3}$
- Protoplanetary disks: T_{kin}~10–1000 K, n ~10⁴–10¹⁴ cm⁻³
- Circumstellar shells of evolved stars: T_{kin} ~300–3,000 K, $n{<}10^{14}~cm^{-3}$
- Earth atmosphere at sea level: T_{kin} ~300 K, n~3 10¹⁹ cm⁻³

Ultra high vacuum conditions, hard to achieve in laboratory

Typical timescales

- Collisional time: ~1 month at 10 K and 10⁴ cm⁻³
- Chemical time: >10⁴–10⁵ years
- Life-time of a cloud: $\sim 10^6 10^7$ years
- Star formation: $\sim 10^5 10^6$ years

Chemistry is slow yet there are many molecules

Importance of molecules

- Physical conditions:
 - Temperature
 - Density
 - Ionization
 - Magnetic field
- Kinematics
- Chemical composition
- Gas thermal balance

Energy levels of molecules

- Rotational, vibrational, electronic transitions
- Collisional or radiative excitation
- Quantum numbers for each level (J, v,...)
- Selection rules (e.g., $\Delta J = \pm I$)

Energy levels of molecules

Emission and Absorption Lines

- Absorption: UV, optical, IR
- Emission: IR, (sub-)millimeter
- Gas-phase & ices

Spectroscopy

Joseph von Fraunhofer

• Fraunhofer lines in solar spectrum (1814)

therefore, from the occurrence of the lines D in the solar spectrum, the presence of sodium in the sun's atmosphere may be concluded.

• Birth of spectral analysis: Gustav Kirchoff (1860)

Detecting molecules

- Space: FUV, IR (2–10 μ m, 20–300 μ m) wavelengths
- Ground: visual, near-IR, (sub-)millimeter wavelengths
- Good spectral resolution ($\Delta \nu / \nu > 10^4 10^6$)
- Laboratory spectra need to be known

Wavelength

- Optical spectroscopy often lacks resolving power
- Measure "equivalent=width of $\lim_{\nu \to \infty} \frac{d\lambda}{d\nu}$:cm $W_{\nu} = \int_{-\infty}^{\infty} (1 - e^{-\tau_{\nu}}) d\nu = \int_{-\infty}^{\infty} \left[\frac{d\nu}{I_{\nu}(0)} - \frac{c}{I_{\nu}}}{I_{\nu}(0)} \right] d\nu$ Hz

Direct measurement of column density of absorbing molecules

Emission lines

distribution of molecules

INTERSTELLAR & CIRCUMSTELLAR MOLECULES (May 2006)

M. Guelin, Nobel Symposium, June 2006

- Diffuse Interstellar Bands (DIBs), optical:
 - Discovered by Heger (1922) and Merill (1934):
 - Remains unidentified (polyaromatic hydrocarbons?)

First theory by Bates and Spitzer (1951), Herbst & Klemperer (1973)

- Radio telescopes:
 - H 2I cm: Ewen & Purcell (1951)
 - OH 18 cm: Weinreb et al. (1963)
 - NH₃ I cm: Cheung, Townes et al. (1968)
 - H₂O I cm: Cheung et al. (1969)
- UV telescopes: Copernicus (1970): H₂ at
- ~125nm (1970), later N₂
- (Sub-)millimeter telescopes: CO at 115 GHz (1970), H₂CO (1970), and many others

Pause

Orion KL Survey, 3 mm, IRAM 30-m

- IR telescopes:
 - IRAS (1983): 0.6 m, 12–100 μ m, first sky survey, warm dust
 - Infrared Space Observatory (1995–1998): 0.6 m, 2.5–240 μm , molecules and ices
 - Spitzer Space Telescope (2003–2009): 0.8 m, 3–180 μm , highsensitivity imaging, molecules and ices
 - Herschel Space Observatory (2009–201X): 2.4 m, 60–670 μm, high-sensitivity imaging, molecules and ices
 - Ground-based telescopes: Keck, Very Large Telescope, ...

Molecules, exoplanet WASP-12b, Spitzer

O₂ in Orion, 487–1121 GHz, Herschel

Goldsmith et al. (2011)

Detected molecules (~170)

H2	H3+	СНЗ	CH4	СНЗОН	CH3NH2	НСООСН3	(CH3)2O	(CH3)2CO
со	CH2	NH3	CH2NH	СНЗЅН	СНЗССН	CH3C3N	С2Н5ОН	CH3C5N
CS	NH2	H3O+	H2CCC	C2H4	СНЗСНО	НС6Н	C2H5CN	СН3СН2СНО
CN	H2O	H2CO	c-C3H2	CH3CN	c-CH2OCH2	С7Н	СН3С4Н	(CH2OH)2
C2	H2S	H2CS	CH2CN	CH3NC	CH2CHCN	НОСН2СНО	С8Н	HCOOC2H5
СН	ССН	c-C3H	NH2CN	СН2СНО	HC5N	СНЗСООН	HC7N	HC9N
CH+	HCN	I-C3H	CH2CO	NH2CHO	С6Н	H2CCCHCN	CH3CONH2	СН3С6Н
HF	HNC	C2H2	нсоон	HC3NH+	СН2СНОН	H2C6	CH3CHCH2	C6H6
CF+	нсо	HCNH+	C4H	H2CCCC	С6Н-	СН2СНСНО	C8H-	C3H7CN
SiO	HCO+	H2CN	HC3N	С5Н		NH2CH2CN		HCIIN
SiS	HOC+	HCCN	HCCNC	HC4H				С2Н5ОСН3
SiC	N2H+	HNCO	HNCCC	HC4N				
SiN	HNO	HOCN	H2COH+	c-C3H2O				
NH	HCS+	HCNO	C4H-	CH2CNH				
NO	C3	HNCS	SiH4	C5N-				
SO	C2O	HSCN	C5	C5N				
SO+	C2S	C3N	SiC4					
СР	SO2	C3O	СИСНО					
PO	N2O	C3S						
PN	CO2	C3N-						
HCI	H2O+	HCO2+						
KCI	H2CI+	CNCHO						
AICI	OCS	C-SiC2						
ОН	MgNC				AIF	AINC	AIOH	NaCl
OH+	MgCN				SiNC	ССР	НСР	FeO
SH	NaCN				CO+	O2	N2	
CN-	SiCN							

http://www.astro.uni-koeln.de/cdms/molecules

Detected molecules

- 41 extragalactic molecules
- 20 positive ions (cations)
- 6 negative ions (anions)
- ~20 isomers
- 6 cyclic species (including benzene, C₆H₆)

Detection of fullerenes (C₆₀ & C₇₀)

Buckyballs In A Young Planetary Nebula

NASA / JPL-Caltech / J. Cami (Univ. of Western Ontario/SETI Institute)

Spitzer Space Telescope • IRS ssc2010-06a

Radiative Association: bond formation

- $H + C \Rightarrow CH^*$
- $CH^* \Rightarrow CH + hv$

or (more likely)

$CH^* \Rightarrow C + H$

- Formation of a excited collisional complex
- Energy conservation => emission of photon

A key process to form first molecules & chemical bonds (early Universe)

$$k \approx 10^{-17} - 10^{-12} \text{ cm}^3 \text{s}^{-1}$$

(Courtesy of Tom Millar, David Williams, Eric Herbst)

Radiative Association: bond formation

Timescales:

- 10⁻² s vibrational transition,
- 10⁻⁸ s electronic transition,
- 10⁻¹³ s collision timescale

=> molecule forms after ~ 10^{11} collisions (10^{5} if electronic transitions are available)!

- Slow for small reactants, but can be rapid for complex radicals
- Hard to measure in laboratory (3-body processes dominate)
- Hard to calculate for complex species

Photodissociation: bond destruction

energy

energy

Cosmic Ray, X-ray, UV Ionization

- $H_2 + CRP/h\nu \Rightarrow H_2^+ + e^-$
- $H_2^+ + H_2 \Rightarrow H_3^+ + H$

 $He + CRP \Rightarrow He^+ + e^-$

- Relativistic energy particles (89% protons, 10% ⁴He, 1% heavy elements)
- Can penetrate in heavily obscured regions
- Produce H₃⁺
- **Produce He⁺**: I.P. of He is 24.6 eV \Rightarrow

He⁺ breaks chemical bonds (also CO)

From observations:

 $k_{\rm CRP} \approx 10^{-17} \, {\rm s}^{-1}$

Ion-Molecule Reactions: bond rearrangement

 $H_3^+ + CO \Rightarrow$

Ion induces dipole moment => long-range Coloumb attraction

 $H_2 + HCO^+$

 $H_2^+ + H_2 \Rightarrow H_3^+ + H_3$

 $k \approx 10^{-9} - 10^{-7} \,\mathrm{cm^3 s^{-1}}$

Key reactions to form molecules
~50% of all processes in astrochemical models

Neutral-Neutral Reactions: bond rearragement

 $N + CH \Rightarrow CN + H$

 $N + CH_3 \Rightarrow HCN + H_2$

REACTION PATH OF MINIMUM ENERGY

- Long-range attraction is weak
- Usually have barriers due to bond breaking for molecular rearrangement
- Many barriers are 'guessed' values,
 ~100-1000 K
- Some are rapid even at ~ 10 K
- Particularly competitive at high temperatures, >100 K

$$k \approx < 10^{-11} - 10^{-9} \,\mathrm{cm}^3 \mathrm{s}^{-1}$$

Dissociative Recombination: bond destruction

- $HCO^+ + e^- \Rightarrow CO + H$
- Capture of e⁻ by an ion => formation of neutral in excited electronic state => dissociation

$$H_3O^+ + e^- \Rightarrow H_2O + H_2O$$

OH + 2H

• Rapid processes, increased rates at low temperatures

- If radiative (no break-up), then usually slow
- Branching ratios and products are not well known

A final step in formation of neutral species

 $k \approx 10^{-7} \,\mathrm{cm}^3 \mathrm{s}^{-1}$

Formation of water

$$H_{2} + CRP \Rightarrow H_{2}^{+} + e^{-}$$

$$H_{2}^{+} + H_{2} \Rightarrow H_{3}^{+} + H$$

$$H_{3}^{+} + O \Rightarrow OH^{+} + H_{2}$$

$$OH^{+} + H_{2} \Rightarrow H_{2}O^{+} + H$$

$$H_{2}O^{+} + H_{2} \Rightarrow H_{3}O^{+} + H$$

$$H_{3}O^{+} + e^{-} \Rightarrow H_{2}O + H \text{ or } OH + 2H \text{ or } OH + H_{2}$$

Formation of complex molecules

C ⁺ + H ₂	$\Rightarrow CH_2^+$
$CH_{2}^{+} + H_{2}^{-}$	\Rightarrow CH ₃ ⁺ + H
$CH_{3}^{+} + H_{2}^{/O}$	\Rightarrow CH ₅ ⁺ /HCO ⁺ + H ₂
CH ₅ ⁺ + e-	\Rightarrow CH ₃ + H ₂
$CH_3 + O$	$\Rightarrow H_2CO$
$CH_{3}^{+} + H_{2}O$	\Rightarrow CH ₃ OH ₂ ⁺ (too low rate, Luca et al. 2002)
$CH_{3}OH_{2}^{+} + e$	- ⇒ CH ₃ OH + H (3 ± 2%, Geppert et al. 2006)

Chemistry on surfaces of dust grains

Surface formation of complex molecules

- Accretion
- Diffusion over the surface
- Recombination
- Desorption back to gas

$H + H \Rightarrow H_{2}$ $O + H \Rightarrow OH + H \Rightarrow H_{2}O$ $N + H \Rightarrow NH + H \Rightarrow NH_{2} + H \Rightarrow NH_{3}$ $C + H \Rightarrow CH + H \Rightarrow CH_{2} + H \Rightarrow CH_{3} + H \Rightarrow CH_{4}$ $CO + H \Rightarrow HCO + H \Rightarrow H_{2}CO + H \Rightarrow H_{3}CO + H \Rightarrow CH_{3}OH$

Chemical Reaction Databases

- Ohio State University (OSU): 4300 reactions, 430 species, 12 elements
- Manchester University (UMIST):

Rate06: 4600 reactions, 420 species, 12 elements

- NIST Chemical Kinetics Database: ~30,000 neutral-neutral reactions (T>300K)
- KIDA (KInetic Database for Astrochemistry): most up-todate, 5000 reactions, 450 species, 12 elements

Only ~10-20% of accurate rates!

Courtesy of Eric Herbst

Computational Chemistry

$$\frac{\partial n_i}{\partial t} = \sum_{j,k \neq i} k_{jk} n_j n_k - n_i \sum_l k_l n_l$$

- Physical conditions
- Initial abundances
- Chemical network
- ODE solver

I run takes ~I s on a modern CPU

Abundances are uncertainties

Modeled abundances are uncertain by factors of 2-10

Photodissociation: bond destruction

• Direct dissociation: transition to a continuum of excited electronic state

Predissociation: excited electronic
 state is mixed with dissociative state

• Spontaneous radiative dissociation: sometimes electronic excited states decay into continuum of the groundstate

internuclear distance

photon frequency