Lecture 2: "Chemistry from Big Bang till Present"

Outline

- I. Chemistry in the early Universe
- 2. Chemistry in molecular clouds
- 3. Chemistry in protoplanetary disks

The Universe is expanding

- Distance from brightness and variability of Cepheid stars
- Velocity from a measured Doppler shift: z = λ_{obs} / λ_{emit} I \approx V / c

• Modern value: $H_0 = 69.32 \pm 0.80$ km s⁻¹ Mpc⁻¹ \Rightarrow t $\approx 1/H_0 \sim 13.77$ Gyr

The Universe after Big Bang

Epoch	Time, s	T _R , K	n _H , cm ⁻³
Baryons and leptons: e⁻, p⁺, n	10-11 – 2	>1012	
Radiation- dominated	2	10 ¹⁰	
Matter-dominated	10 ¹¹ – 10 ¹²	4,000	500
Present	10 18	2.73	2 10-7

Standard Cosmological Model

- Composition at the beginning of the matter-dominated era:
 - H: D : 4 He : 3 He : 7 Li
 - $I : 4 \ I0^{-5} : 8 \ I0^{-2} : I0^{-5} : 2 \ I0^{-10}$

(1) H + hv
$$\rightarrow$$
 H⁺ + e⁻, rate ~ radiation field
(2) H⁺ + e \rightarrow H , rate ~ T^{-0.61}

- As Universe expands and cools, recombination occurs: $n(H^+) = n(H)$ at z = 1340, $T_R = 3630$ K
- No thermodynamical equilibrium

First neutral atoms

Ionization potentials [in eV]

	1 st	2 nd	3 rd
Η	13.6		
He	24.6	54.4	
Li	5.4	75.6	122.5

- First: $He^+ + e^- \Rightarrow He + hv$
- Second: $H^+ + e^- \Rightarrow H + hv$

First Molecules

Lepp, Stancil, Dalgarno, J. Phys. B., At. Mol. Opt. Phys 35 (2002)

T = 380000yr

 $He^+ + He \rightarrow He_2^+ + hv$ (RA)

He + H⁺ \rightarrow HeH⁺ + hv (RA)

Destroyed by photodissociation and dissociative recombination with e-

Chemistry of H

• H₂ forms via gas-phase reactions

• Formation by radiative association is too slow: H + H \bigstar H₂ + hv

(H₂ does not have a dipole moment => difficult to get rid of excess of energy via radiation of photons)

Formation of H₂ from HeH⁺

First, H₂ formed via ion-molecule reactions with HeH⁺:

- $He + H^+ \rightarrow HeH^+ + hv$
- $HeH^+ + H \rightarrow H_2^+ + He$
- $H_2^+ + H \rightarrow H_2 + H^+$

(here He and H are catalysts!)

 H_2 and ${H_2}^{\scriptscriptstyle +}$ are rapidly destroyed by background radiation

Formation of H₂ from H⁺

Later, formation H_2 involves RA & ion-molecule reaction:

 $H + H^+ \rightarrow H_2^+ + hv$

 $H_2^+ + H \rightarrow H_2 + H^+$

 H_2^+ is destroyed by photodissociation and DR: $H_2^+ + hv \rightarrow H + H^+$ $H_2^+ + e \rightarrow H + H$

Photodissociation of H_2^+ is efficient when $T_R > 4000$ K => no much of H_2 at z > 1000

Formation of H₂ from H⁺

Formation of H₂ from H⁻

At $z \sim 100$, H₂ can be formed through H⁻:

- $H + e \rightarrow H^- + hv$ (radiative attachment)
- $H^- + H \rightarrow H_2 + e$ (associative detachment)

H⁻ is destroyed by photodetachment reaction:

 $H^- + h\nu \rightarrow H + e^-$ (barrier is 0.75 eV) => slow when $T_R < 1000$ K

Destruction of H₂

 H_2 is destroyed by ion-molecule reactions with H^+ and collisional dissociation:

- $H_2 + H^+ \rightarrow H_2^+ + H$
- $H_2 + e^- \rightarrow H + H^-$

Small molecular fraction in the early Universe: $X(H_2) \sim 10^{-6}$

Chemistry of D

Formation of HD:

 $H^+ + D \rightarrow H + D^+$

 $D^+ + H_2 \rightarrow HD + H^+$

HD is destroyed as H₂ => X(HD) ~ (D/H) * X(H₂) ~ $10^{-10} - 10^{-9}$

Summary: evolution of chemical species in the early Universe

Galli, Palla (1998), A&A, 335, 403

Sensetivity to cosmological parameters

E. van Dishoeck, "Master course in Astrochemistry" (2011)

"Chemistry in molecular clouds and protoplanetary disks"

Astronomer's periodic table

• 99% gas, 1% dust (by mass), depletion of refractory elements McCall (2001)

Key factors in interstellar chemistry

- Heavily H-dominated: $X(C, O, N) < 10^{-4}$
- Solar composition: C/O ~ 0.46
- In dark, dense regions:
 - Almost all C is locked in CO
 - 1/2 of O is in CO, another 1/2 of O is in H_2O
 - Almost all N is locked in N_2
- In UV-irradiated regions: C⁺, S⁺, O, N, H
- At T < 100 K ice mantles start to grow
- Cosmic ray ionization

Types of molecular clouds

N_H (cm⁻²)

- Diffuse clouds:
- Translucent:
- Dark dense clouds:

CO (I-0) survey of Milky Way

Prestellar cores

Visible

- Typical mass $\sim 10 10^3 M_{sun}$, size < 1 pc, n >10⁴ cm⁻³, T $\sim 10 K$
- Dynamically "quiet", t ~ I I0 Myr
- No protostars inside

General scheme: physics

- Heating: CR and UV
- Cooling: dust and molecular lines (C, CO, OH)
- Cold center, warmer outer shell
- Density profile: a quasy steady state?
- Rotation, infall, turbulence

Alves et al. 2001

Molecules in dense clouds

- >1970's, "classical" source: TMC-1S or TMC-1CP
- Formation of ices: CO, CCS, CS, ...
- \bullet Non-depletion of N_2H^+ and NH_3
- Carbon chains
- Negative ions
- Deuterated species
- Simple organics: HCOOH, CH₃OH, ...

Pause

Barnard 68 cloud

- CO frozen in the center (at T < 20 K)
- There, N_2 and H_2 exist:

 $H_2 + CRP \rightarrow H_2^+ + e^-$

- $H_2 + H_2^+ \rightarrow H_3^+ + H_3$
- $H_3^+ + H \rightarrow N_2H^+ + H_2$
- When CO is not frozen: $N_2H^+ + CO \rightarrow HCO^+ + N_2$

Long carbon chains in TMC-I

Langer et al. 1997

Negative ions in TMC-I

 $C_6H + e^- \Rightarrow C_6H^- + hv$ k ≈ <10⁻⁷ cm³s⁻¹

Effective for molecules with large e- affinities

<10% of anion/neutral (predicted by Herbst 1981)

Discovered in clouds with predicted abundances (McCarthy et al. 2006, Bruencken et al. 2007)

McCarthy et al. 2006

Ices in dense clouds

- Dominated by H₂O, CO, CO₂,
- Complex ices: HCOOH, CH₃OH,
- ~10–50% of heavy elements are in ices
- Up to 99% of the heavy elements may be frozen out

Oxygen chemistry

I.P. of O > 13.6 eV \Rightarrow oxygen mostly neutral

Ionization provided by cosmic rays:

```
H_2 \Rightarrow H^+, H_2^+, H_3^+ (rapid)
```

```
H^{+} + O \rightarrow H + O^{+} (+227 \text{ K})O^{+} + H_{2} \rightarrow OH^{+} + HH_{3}^{+} + O \rightarrow OH^{+} + H_{2}
```

Once OH^+ formed, rapid ion-molecule reactions lead to OH, H_2O and O

 $OH + O \rightarrow O_2 + H$

Carbon chemistry

I.P. of C < 13.6 eV \Rightarrow carbon mostly C⁺

Initial reactions:

 $C^+ + H_2 \not\cong CH^+ + H$: endothermic by 0.4 eV

 $C^+ + H_2 \rightarrow CH_2^+ + h\nu$ (RA, works at low T)

or C + $H_3^+ \rightarrow CH^+ + H_2$

 $CH^+ \text{ or } CH_2^+ \text{ react with } H_2 \Rightarrow CH_3^+, CH_5^+$

Dissociative recombination leads to CH, CH₂, CH₃, CH₄

 $C^{+} + CH_n \Rightarrow \text{carbon chains}$

Nitrogen chemistry

I.P. N > 13.6 eV \Rightarrow nitrogen mostly neutral

Nitrogen chemistry:

 $N + H_3^+ \rightarrow NH_2^+ + H$ does not occur

 $N^+ + H_2 \rightarrow NH^+ + H$ (barrier of ~100 K)

Starts with neutral-neutral chemistry linked to carbon:

```
CH, C_2 + N \rightarrow CN + H, C
```

 $CH_3^+ + N \rightarrow H_2CN^+ + H$

 $H_2CN^+ + e \rightarrow HCN \text{ or } HNC + H \text{ or } CN + H_2$

Surface chemistry: O

Tielens & Hagen 1982

Surface chemistry: CO

General scheme: chemistry

- Dense core: C⁺ is converted to C and CO
- Early times: CCS and HC_nN are abundant
- Late times: N₂H⁺, H₂D⁺, NH₃,
 CO is absent in the center
- CCS traces outer shell, NH₃
 traces central region

"Chemistry in protoplanetary disks"

- Planet formation
- Comets and asteroids
- Primordial chemistry
- Organic molecules

Credit: Bill Saxton, NRAO/AUI/NSF

Protoplanetary disks in Orion: optics, Hubble

Young protoplanetary disks in Taurus

Young Stellar Disks in Infrared

HST • NICMOS

Zone of ions and radicals (atmosphere)

- Intense UV and X-rays
- Low densities
- High temperatures
- High ionization degree
- Limited gas-phase chemistry

Zone of molecules (intermediate layer)

- Partly shielded from UV and X-rays
- Moderate densities
- Moderate temperatures
- Oasis of rich chemistry: gas-surface cycling, photoprocessing of ices
- Most molecular lines are excited here

Zone of ices (midplane)

- Only cosmic rays can penetrate
- High densities
- Low temperatures
- Molecules are frozen out
- Rich chemistry on dust surfaces

Inner, planet-forming zone

- High n,T
- Reactions with barriers
- 3-body collisions
- X-ray-driven processes
- No freeze-out
- Fast grain evolution

Chemical composition: disks vs clouds

- Strong depletion of gas-phase molecules
- Freeze-out & UV dissociation

Observations vs predictions: DM Tau

Species	Observed column density, cm ⁻²	Modeled column density, cm ⁻²
СО	3.0 (17)	3.0 (17)
HCO ⁺	1.7 (13)	8 (12)
H ₂ CO	1-2 (13)	6.2 (12)
N_2H^+	4 (11)	3.4 (11)
CS	4 (12)	8.1 (10)
CN	4 (13)	1.4 (13)
HCN	8 (12)	1.2 (13)
HNC	3 (12)	1.0 (13)
ССН	3 (13)	1.1 (13)
Agreement		7/8

- Agreement with molecules in outer disk
- Agreement with cometary ices (inner Solar nebula)

Takeaway message

- Layered chemical structure
- Depletion of gaseous molecules: UV + freeze-out
- Large observational & modeling programs
- Models qualitatively agree with observations
- Different chemistry in Herbig Ae and T Tauri disks?