Lecture 12: Protoplanetary disks

Outline

- History and basic information
- Disk physics
- Disk chemistry
- New era of discoveries with ALMA and JWST

Confusing nomenclature

- "Protoplanetary disk" (PPD)
- "Planet-forming disk"
- "Solar nebula"
- "Circumstellar disk"
- "Accretion disk"
- "Proplyd"
- "Transitional disk"
- "Debris disk"
- NOT THE SAME AS "Planetary nebula"!

Nebular hypothesis of planet formation

- First idea by Swedenborg, E. ,,Philosophical and Mineralogical Works" (1734)
- Kant, I., Allgemeine Naturgeschichte und Theorie des Himmels" (1755)
- Laplace, P.–S. ,,Exposition du Système du Monde" (1796)
- Solar system formed from a rotating gas cloud (nebula) \Rightarrow coplanar planetary orbits, planets

rotate in the same direction as Sun

Immanuel Kant (1724 – 1804)

Transformation of a cloud into a disk

 Rotating dense cloud becomes gravitationally unstable

• Protostar with massive accretion disk, infalling envelope, and outflow

- Young star with planet-forming disk only
 - Star with planetary system

Proplyds in Orion, Hubble

Edge-on PPDs: Hubble, near – IR

- Dark lane: mm-sized dust (absorption)
- Bright cones: (sub)micron-sized dust (scattering)

Dust distribution: IM Lup

ALMA, radio: mm dust (emission) • VLT/SPHERE, near–IR: μm dust (scattering)

- Large mm-sized dust is in midplane
- \bullet Small μm -sized dust is coupled to the gas and vertically extended
- Gaps and rings due to (forming) planets?

Young gas planets in PDS70 disk

- Two ~2 10 M_{Jup} planets at 21.5 and 35.5 au (2:1 resonance)
- Accreting gas from the disk

Disks: basic information

- \bullet 99% gas (mainly H_2 and He), 1% dust
- Masses: $<0.01 0.2 M_{Sun}$
- Keplerian rotation: $v_{\phi} \cong \Omega_{K} r = \sqrt{\frac{GM_{*}}{r}}$
- Radii: <10 1000 au
- Heights: increase with radius (flaring)
- Accretion rates: $\sim 10^{-9} 10^{-7} M_{star}/year$
- Lifetime: ~I I0 Myr

Scheme of a disk structure

Henning & Semenov 2013, Chem. Reviews

- Gradients of T and $n_H \Rightarrow$ layered chemistry
- Complex dynamics
- Grain evolution & formation of planets

Astrochemistry: ~300 molecules detected in space, only 33 in disks

Öberg, Facchini, Anderson (2023)

Molecules as probes of disk physics

Tracer	Quantity		
¹² CO, ¹³ CO, C ¹⁸ O, C ¹⁷ O, ¹³ C ¹⁸ O, ¹³ C ¹⁷ O	Temperature, density		
HD	Gas mass		
HCO+, N ₂ H+,	Ionization		
CN, HCN, HNC, C ⁺ , C ₂ H, c-C ₃ H ₂	FUV/X-rays		
H ₂ CO, CH ₃ OH, CH ₃ CN	Surface processes		
¹³ CO, C ¹⁸ O, DCO ⁺ , H ¹³ CN, C ¹⁵ N, C ³⁴ S,	Isotopic fractionation		
CS/SO, C ₂ H/CO,,	C/O ratio		

Challenging "obs vs theory" cycle

- Physics: parametrized structure, $T_d = T_g$ (fast)
- Chemistry: parameterized (fast) or full-scale (slowest part)
- Radiative transfer: LTE is often assumed (fast)

Hot irradiated atmosphere: simple ions and radicals

- Intense UV and X-rays radiation
- n_H < 10⁵⁻⁶ cm⁻³
- T > 100–10 000 K
- High ionization degree
- Limited gas-phase chemistry

Warm intermediate layer: molecules

- Partly shielded from UV and X-rays
- $n_H \sim 10^6 10^9 \text{ cm}^{-3}$
- T ~ 20 500 K
- Rich chemistry
- Molecules are in the gas phase
- Emission lines!

Cold, dense midplane: ices

- Only CRPs can penetrate
- n_H > 10⁸ cm⁻³
- T < 10–50 K
- Freeze-out, a lot of ices
- Rich chemistry on dust surfaces

Planet-forming inner zone: dynamics

- n_H > 10¹⁰ cm⁻³
- T > 50–200 K
- 3-body collisions
- X-ray-driven processes
- No freeze-out
- Grain evolution

Dust evolution in a nutshell

- Sticking collisions due to Brownian motion (V <10 cm/s)
- Fragmentation at V >10 100 m/s
- mm grains rain down (settling)
- mm grains drift inward (head wind)
- Mostly proved by experiments

Fragmentation

Weidenschilling et al. (1993), Blum (2010)

- Head wind (rotational velocity difference between gas and dust)
- Meter-sized bodies drift inward within <10⁴ years
- How to overcome it? A few mechanisms have been proposed

FIR/mm wavelengths are best to study disks

- Sensitive to cold ~10–20 K regions
- Optically thin dust emission: measure of dust mass
- Rotational transitions of many molecules: gas physics, chemistry
- High frequency resolution detectors: $R > 10^{6}$ (up to 20 m/s)
- High angular resolution interferometers: ~I au at 60 pc

Gas masses via HD: Herschel, FIR

Bergin et al. (2013), Nature 493, 644

- TW Hya disk: $M_{disk} \sim 0.05 M_{sun}$
- Enough mass to form a planetary system
- Gas masses have been measured only in 3 disks

Power of radio-interferometry: HL Tau disk

- Modern (sub-)mm interferometry:
- Continuum: resolution > 0.02" $\Rightarrow \sim I$ au (TW Hya) / ~ 5 au (others)
- Lines: resolution >0.06" $\Rightarrow \sim 3$ au (TW Hya) / ~ 15 au (others)

ALMA, 0.03"@I.25mm, dust emission (DSHARP data)

- Concentric gaps and rings in 20 disks, much less spirals or blobs
- Rings consistent with dust trapping in pressure maxima; $\alpha < 10^{-3}$
- No obvious systematics wrt star or disk properties

Andrews et al. 2020

ALMA, line emission at <0.1" (MAPS data)

Oeberg et al. (2021)

Various emission sizes, inner radii, bright inner emission "cores"

Temperatures from CO lines: ALMA, radio

- Low T ~ 20 60 K at r > 100 au
- Temperature decrease with radius and increase with height
- Agreement with radiative transfer models

Gas kinematics in disks

• Keplerian rotation

Teague et al. (2016), ApJ Flaherty et al. (>2016), ApJ

• Gas temperature

• Local line width:
$$\Delta V(r) = \sqrt{\frac{2kT(r)}{\mu m_H} + \delta V_{tu}(r)^2}$$

• Heavy molecules are the best (CS) \Rightarrow disks are not turbulent!

Gas spirals in TW Hya via ¹²CO

• Archimedean spirals in V and T at >80 au \Rightarrow planet-disk interactions?

Meridional flows in HD 163296

Large disk surveys: Lupus star-forming region

Sz 83	RY Lup	Sz 98	Sz 129	Sz 111	MY Lup	Sz 71
Sz 68	J16083070-3828268	J16000236-4222145	Sz 114	J16070854-3914075	J16011549-4152351	Sz 133
Sz 65	Sz 118	V856 Sco	Sz 100	J15450887-3417333	Sz 123A	Sz 84
Sz 73	J16124373-3815031	Sz 108B	Sz 113	Sz 90	Sz 74	J16085324-3914401
J16090141-3925119	Sz 69	Sz 110	J15450634-3417378	Sz 66	Sz 72	Sz 103
Sz 117	Sz 81A	Sz 88A	Sz 131	J16081497-3857145	J16095628-3859518	J16102955-3922144

• 89 resolved disks: dust CO emission

Ansdell et al. (2016), ApJ

Large disk surveys: Lupus star-forming region

• M_{dust} scales as $[M \star]^{1.73 \pm 0.25}$

Lupus disk survey: dust and gas masses

10⁻¹

Resolved chemistry: CO snowline in TW Hya

- N₂H⁺ anti correlates with CO: N₂H⁺ + CO \rightarrow HCO⁺ + N₂
- N_2H^+ ring at r > 30 au, where CO is frozen

Qi et al. (2013), Science

Edge-on disk: "Flying Saucer"

- •Cold, narrow dust disk: ~ 10 K
- Large, ~Imm grains
- Edge-on + Rotation \Rightarrow Emission (r,z)
- Direct image of disk gas structure!

Alcoholes: CH₃OH in TW Hya

Walsh et al. (2016) Parfenov et al. (2017)

- Methanol ring that peaks at ~30 au
- Produced by CO surface chemistry

Organic acid: HCOOH in TW Hya

Organics in FU Ori systems: V883 Ori

0.4 0.0-0.4 0.4 0.0-0.4 0.4 0.0-0.4 $\Delta \alpha (\text{orcsec}) \quad \Delta \alpha (\text{orcsec}) \quad \Delta \alpha (\text{orcsec})$ van t'Hoff et al. (2018), Lee et al. (2019)

- Methanol, acetone, acetonitrile, acetaldehyde, and methyl formate
- Sublimated ices at the edge of the snowline (T>100 K)

PDS70 system: small, thermally processed dust grains

Zooming in...

Pre-JWST times

Spitzer: large bandwidth, low spectral resolving power ($R = \lambda / \Delta \lambda$)

The JWST era

JWST enables high resolution spectroscopy at the birthplace of rocky planets

^{5.5} Myr old

First water detection in a planet-hosting disk

JWST: GW Lup

Conclusions

- Planet-forming environments
- \bullet Vertical and radial gradients of T and $n_{\rm H}$
- Layered chemistry
- Spatially-resolved with radio-interferometers
- Statistically significant surveys of dust and gas emission
- ALMA and JWST are fantastic!

Suggested literature

- Henning, Th. and Semenov, D. (2013), Chem. Reviews, 113, 9016
- Dutrey, A. et al. (2014), Protostars & Planets VI, 317
- Armitage, P. (2015), 45th Saas-Fee Advanced Course:

https://ui.adsabs.harvard.edu/abs/2015arXiv150906382A/abstract

• Öberg, K and Bergin, E. (2021), arXiv:2010.03529