Lecture 3: Different ways to detect molecules

James Webb Space Telescope (NASA)

Atacama Large Mm Array

Contact info

email I: semenov@mpia.de

email 2: dmitry.a.semenov@gmail.com
www.mpia.de/~semenov

Astronomical observations: an old story

- Nebra sky disk, Bronze/Iron Age, 3600 years old
- Sun, Moon, constellations, angles between solstices

First astronomical observations

- Calendar and religion
- Ancient Egypt (3000 BC): Sirius risings
- Sumer \& Babylonia (I200 BC): first stellar catalog, Venus risings, I8-year lunar eclipse cycle
- Ancient Greece (~200 BC): Earth size, axial tilt, stellar catalog (Almagest), stellar magnitudes, planetary orbits
- Ancient China: records of supernovae \& comets
- Medieval Middle East: stellar catalogs, SN I006, Magellanic Clouds
- Renaissance Europe: stellar catalog by Tycho Brahe completed by Kepler (1627), Kepler laws (I609-I6I9), Copernican revolution (I543)

Why observations are so important?

Almost all of the information we have about the Universe comes from the study of electromagnetic radiation (light)

Red glow: excited hydrogen

Light scattered
by interstellar dust

Modern telescopes permit us to take detailed images of interstellar objects. These images contain a lot of information for the trained eye.
> "A picture maybe be worth a thousands words, but a spectrum is worth a thousands pictures"

Overview of molecular energy levels

Electronic
Transitions:
$\Delta \mathrm{E}=1-15 \mathrm{eV}$
Visible-UV

Vibrational
Transitions:
$\Delta \mathrm{E}=0.1-1 \mathrm{eV}$
Infrared

Rotational
Transitions:
$\Delta \mathrm{E}=0.01-0.1 \mathrm{eV}$
(sub)-Millimeter

Transition Intensities: Einstein Coefficients

Equilibrium:
absorbed photons = emitted photons

$$
\begin{equation*}
\left[B_{21} \rho(\nu)+A_{21}\right] N_{2}=B_{12} N_{1} \rho(\nu) \tag{1}
\end{equation*}
$$

Solving for $\rho(\mathrm{v})$:

$$
\begin{equation*}
\rho(\nu)=\frac{A_{21} N_{2}}{B_{12} N_{1}-B_{21} N_{2}} \tag{2}
\end{equation*}
$$

Using Boltzmann distribution:

$$
\begin{gather*}
\frac{N_{2}}{N_{1}}=\frac{g_{2}}{g_{1}} e^{-\frac{h \nu}{k T}} \rightarrow N_{1}=N_{2} \frac{g_{1}}{g_{2}} e^{\frac{h \nu}{k T}} \\
\text { Insert (3) into (2): } \\
\rho(\nu)=\frac{A_{21} N_{2}}{B_{12} N_{2} \frac{g_{1}}{g_{2}} e^{\frac{h \nu}{k T}}-B_{21} N_{2}}=\frac{\frac{A_{21}}{B_{21}}}{\frac{g_{1}}{g_{2}} \frac{B_{12}}{B_{21}} e^{\frac{h \nu}{k T}}-1} \tag{4}
\end{gather*}
$$

Transition Intensities: Einstein Coefficients

$$
\begin{equation*}
\rho(\nu)=\frac{\frac{A_{21}}{B_{21}}}{\frac{g_{1}}{g_{2}} \frac{B_{12}}{B_{21}} e^{\frac{h \nu}{k T}}-1} \tag{4}
\end{equation*}
$$

Planck's thermal radiation law

$$
\begin{equation*}
\rho(\nu)=\frac{8 \pi \nu^{2}}{c^{3}} \frac{h \nu}{e^{\frac{h \nu}{k T}}-1} \tag{5}
\end{equation*}
$$

Equating (4) and (5):

$$
\begin{equation*}
\frac{8 \pi \nu^{2}}{c^{3}} \frac{h i v}{e^{\frac{h i}{k T}}-1}=\frac{\frac{A_{21}}{B_{21}}}{\frac{g 1}{g_{2}} \frac{B_{12}}{B_{21}} e^{\frac{h v}{k T}-1}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
B_{12}=\frac{g_{2}}{g_{1}} B_{21} \quad A_{21}=\frac{8 \pi h \nu^{3}}{c^{3}} B_{21} \tag{7}
\end{equation*}
$$

ρ : energy density of the radiation field

Lifetimes and Einstein A:

The lifetime T of an initial state i Is given by the sum of the Einstein coefficients summed over all final states

$$
T=\frac{1}{\sum_{f} A_{i f}}
$$

What makes transitions strong: accelerated charges

Transition frequency

$$
\mathrm{A}_{21}=\frac{2 \omega_{21}^{3}}{3 \varepsilon_{0} \mathrm{hc}^{3}} \mu_{21^{2}}^{\text {Transition dipole moment }}
$$

In general, the dipole moment is defined as the summation of the product of the charges q_{j} times the position vector r_{j} for all charged particles j :

$$
\mu=\Sigma_{j} q_{j} r_{j}
$$

Vibrations: change in dipole moment with vibr. coordinate required $d \mu / d R \neq 0$ Rotations: rotating polar molecule (perm. dipole moment) looks like oscillating dipole

Electric Dipole transitions: $\quad \mu_{21} \approx \mathrm{e} \mathrm{a}_{0} \quad \mathrm{~A}_{21} \approx \mathrm{e}^{2} \mathrm{a}_{0}{ }^{2}$
Dipole moments are measured in Debye, molecules with permanent dipole moments typically have 1-3D
Electric Quadrupole transitions are weaker by a factor $\left(e a_{0} \lambda\right)^{2} /\left(e a_{0}\right)^{4} \approx 10^{8}$
Magnetic dipole transitions scale with the Bohr magneton (eh/4 mmc), They are weaker by $\alpha^{2} \approx 10^{5}$

Molecular transitions: Einstein coeff $A_{j i}$ and oscillator strength $\boldsymbol{f}_{j i}$

Type of transition	f_{ul}	$A_{\mathrm{ul}}\left(\mathrm{s}^{-1}\right)$	Example	λ	$A_{\mathrm{ul}}\left(\mathrm{s}^{-1}\right)$
Electric dipole					
UV	1	10^{9}	$\mathrm{Ly} \alpha$	$1216 \AA$	2.40×10^{8}
Optical	1	10^{7}	$\mathrm{H} \alpha$	$6563 \AA$	6.00×10^{6}
Vibrational	10^{-5}	10^{2}	CO	$4.67 \mu \mathrm{~m}$	34.00
Rotational	10^{-6}	3×10^{-6}	CS^{b}	6.1 mm	1.70×10^{-6}

- Oscillator strength ~ probability of absorption or emission
- Lifetime of molecule in an excited state: $t_{\mathrm{ex}} \propto 1 / A_{u l}$
$\mathrm{CO}_{2}: 0 \mathrm{D}$
Transition frequency
CO: 0.ll2 D

$$
\mathrm{A}_{21}=\frac{2 \omega_{21}^{3}}{3 \varepsilon_{0} \mathrm{hc}^{3}} \mu_{21}^{2}
$$

Transition dipole moment H2O: I. 85 D HCN: 2.98 D

Resources: HITRAN database

The HITRAN Database

HITRAN is an acronym for high-resolution transmission molecular absorption database. HITRAN is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere. The database is a long-running project started by the Air Force Cambridge Research Laboratories (AFCRL) in the late 1960's in response to the need for detailed knowledge of the infrared properties of the atmosphere.
For additional background, see Interview.

The HIT and its a HITEM paramet develop: Molecul Harvard for Astr continue Laurenc
spectros The HITRAN2012 Database contains 7,400,447 spectral lines for 47 different molecules,

HITRAN Facts

 incorporating 120 isotopologues. Included in these 47 species are the oxygen atom (singlet) and the NO^{+}ion. Files for three of the molecules $\left(\mathrm{ClONO}_{2}, \mathrm{SF}_{6}\right.$, and $\left.\mathrm{CF}_{4}\right)$ are stored separately in the /HITRAN2012/Supplemental/ folder.- See a list of molecules and their associated isotopologues that are currently included in the HITRAN database.
- You can see their allowable vibrational modes.
- See a list of molecules represented by infrared absorption cross-sections that are currently included in the HITRAN compilation.
- The uncertainty indices used in HITRAN are defined in this table.
- Database formats are shown for the most recent HITRAN compilations.
- It is helpful to view the tree structure of the HITRAN compilation.

Resources: Cologne Database for Molecular Spectroscopy

https://www.astro.uni-koeln.de/cdms

Electronic transitions (UV-optical)

- H_{2}
- B-X: Lyman system (<| $25 \AA$ Å)
- C-X:Werner system (<105IÅ)

TABLE VI
Experimentally Determined Level Energies (in cm^{-1}) of the $B^{1} \Sigma_{u}^{+}$state of H_{2}.

	$\checkmark \quad 0$	1	2	3	4	5	6	7	8	
J										J
0	90203.57	91521.85	92803.36	94050.06	95263.10	96443.05	97590.62	98706.05	99790.03	0
1	90242.31	91558.72	92838.58	94083.82	95295.52	96474.28	97620.65	98734.91	99818.04	1
2	90319.68	91632.27	92908.87	94151.23	95360.28	96536.65	97680.70	98792.66	99874.00	2
3	90434.64	91741.63	93013.39	94251.53	95456.72	96629.48	97770.12	98878.80	99957.45	3
4	90586.45	91886.11	93151.69	94384.26	95584.40	96752.39	97888.61	98993.04	100068.31	4
5	90773.35	92064.30	93322.33	94548.15	95742.11	96904.42	98035.08	99134.38	100206.19	5
6	90993.98	92274.93	93524.30	94742.33	95929.00	97084.53	98208.99	99302.17	100388.07	6
7	91246.40	92516.21	93755.85	94965.09	96143.77	97291.67	98408.80	99495.34	100548.50	7
8	91528.60	92786.55	94015.61	95215.21	96384.90	97524.27	98633.59	99712.47	100760.11	8
9	91838.29	93083.69	94301.73	95490.96	96650.90	97781.22	98881.74	99952.54	100992.78	
10	92173.45	93406.01	94612.13	95790.48	96940.15	98060.87	99152.03	100213.92	101245.97	10
11	92531.77	93751.14	94945.16	96112.22	97251.11	98361.57	\$9442.98	tees95.22	101518.54	11
12	92910.96	94117.35	95298.96	96454.23	97581.94	98681.67	99752.72	100795.13	101888.88	12
13	93309.09	94502.22	95671.37	96814.75	97930.88	99019.44	100818.46	101112.19	102115.93	13
14	93723.93	94904.24	96060.90	97192.01	9829.54	99373.79	100423.18	101444.52	102438.00	14
15	94153.74	95321.28	96465.24	97584.15	98676.88	9\%742.44	100730.65	101790.99	192773.67	15
16	94596.58	95751.75	96883.26	97990.09	99070.66	100124.44	101151.09	102150.27	103122.05	16
17	95050.72	96193.55	97312.98	98407.46	99475.81	100517.76	101532.11	102520.48	163481.28	17
18	95515.10	96645.84	97753.08	98835.23	99891.63	100921.36	101924.52	102900.75	103850.02	18
19	95987.60	97106.72	98201.88	99271.62	100315.98	101333.72	102324.79	103289.47	104227.17	19
20	96467.66	97575.20	98658.14	99716.26	100748.14	101753.99	102733.02	103685.63	104611.89	20
21	96953.68	98049.54	99120.77	100166.56	101186.89	102180.36	103147.44	10468.13	105002.60	21
22	97445.25	98529.56	99589.24	100622.68	101630.35	102612.08	103567.11	104496.16	105398.51	22
23	97940.86	99013.66	100061.55	101083.24	102079.50	103047.95	143991.36	104908.33	105798.36	23
24	98440.03	99501.62	100537.42	101547.10	102530.74	103487.59	104418.73	105323.53		24
25	98942.08	99991.84	101016.05	102014.24	102985.88	103930.39	104848.88	105742.07		25
26	99446.41	100484.65	101496.33	102482.40	103441.76	144374.35	145281.27	106161.39		26
27	99952.29	100978.83	101979.46	102951.68	103906. 43	104820.11	105514.67			27
28	100458.92	101473.77	102461.84	103433.40	104358.40	145366.9	106149.66			28

Abgrall et al. (I993)
Courtesy of E. van Dishoeck (20II)

Vibrational transitions (IR)

- Zero-point $\mathrm{E}_{\text {vib }}=\mathrm{I} / 2 \hbar \omega$, scales as mass- ${ }^{-1 / 2}$
- Equidistant separation of levels: only harmonic approximation
- Many degrees of freedom

Vibration modes of simple molecules

Fundamental or normal modes:
V_{1} Symmetric stretch
v_{2} Bend
\boldsymbol{V}_{3} Asymmetric stretch
Overtones,
combinations and
differences of
fundamental vibrations
(e.g., $2 \mathrm{v}_{1}, \mathrm{v}_{1}+\mathrm{v}_{3}$ etc.)

$$
\text { Linear triatomic }\left(\mathrm{CO}_{2}, \quad \mathrm{~N}_{2} \mathrm{O}\right)
$$

Diatomic $\left(\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}\right)$

A non-linear molecule of N atoms: $3 \mathrm{~N}-6$ normal modes (linear has $3 \mathrm{~N}-5$)

Vibrational modes: hydrocarbons

Group
CH stretch

$\equiv \mathrm{C}-\mathrm{H}$	$3280-3340$
$=\mathrm{C}-\mathrm{H}$	$3000-3100$
$\mathrm{CO}-\mathrm{CH}_{3}$	$2900-3000$
$\mathrm{C}-\mathrm{CH}_{3}$	$2865-2885$
	$2950-2975$
$\mathrm{O}-\mathrm{CH}_{3}$	$2815-2835$
	$2955-2995$
$\mathrm{~N}-\mathrm{CH}_{3}$	$2780-2805$
$\mathrm{~N}-\mathrm{CH}_{3}$	$2810-2820$
CH_{2}	$2840-2870$
	$2915-2940$
CH	$2880-2900$

$\mathrm{C} \equiv \mathrm{C}$ stretch

	$\mathrm{C} \equiv \mathrm{C}$	$2100-2140$
$\mathrm{C}=\mathrm{C}$ stretch	$\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$	$2190-2260$
	$\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-$	$2040-2200$
	$-\mathrm{HC}=\mathrm{C}=\mathrm{CH}$	
	$-\mathrm{HC}=\mathrm{C}=\mathrm{CH}-$	$1945-1980$
		$1915-1930$

CH bend

CH_{3}	$1370-1390$	symmetric
	$1440-1465$	asymmetric
CH_{2}	$1440-1480$	
CH	1340	

NASA Ames database: http://www.astrochem.org/pahdb/
Tielens' book (2005)

Rotational transitions (IR-radio)

Energy levels

$$
E_{r}=B J(J+1)
$$

Selection rule:

$$
\Delta J= \pm 1
$$

Transitions:

$$
\begin{gathered}
E_{r}(J+1)-E_{r}(J) \\
=B[(J+1)(J+2)-J(J+1)]
\end{gathered}
$$

$$
\Delta E=2 B[J+1]
$$

- Rigid rotors: $\mathrm{B} \sim \hbar^{2} / 21$, where I - moment of inertia (depends on mass)
- Equidistant separation of line frequencies

CO rotational ladder

Types of spectra

Absorption lines

- Cool gas in front of warm continuum
- Slit + diffraction grating/prism + detector
- Specific frequencies determined by gas composition

Absorption lines

- I802, William Hyde Wollaston \Rightarrow dark features in the solar spectrum
- 1814, Joseph von Fraunhofer \Rightarrow systematic measurements, 574 lines
- I860, Gustav Kirchhoff and Robert Bunsen \Rightarrow first identification (Na)

Designation	Element	Wavelength (nm)	Designation	Element	Wavelength (nm)
A	O_{2}	759.370	d	Fe	466.814
B	O_{2}	686.719	e	Fe	438.355
C	Ha	656.281	G^{\prime}	Hy	434.047
a	O_{2}	627.661	G	Fe	430.790
D_{1}	Na	589.592	G	Ca	430.774
D_{2}	Na	588.995	h	$\mathrm{H} \mathrm{\delta}$	410.175

Absorption spectroscopy

Absorption spectroscopy

- Optical spectroscopy has limited resolution: equivalent width W

> Wavelength

- Equivalent width:

$$
\boldsymbol{W}_{v}=\int_{-\infty}^{\infty}\left[\frac{I_{v}(0)-I_{v}}{I_{v}(0)}\right] \mathrm{d} v \quad \mathrm{~Hz}
$$

Absorption spectroscopy

- If line is not fully saturated:
- $\boldsymbol{W}_{\boldsymbol{v}} \sim$ oscillator strength $\boldsymbol{f} \mathbf{x}$ amount of molecules \boldsymbol{N}
- Oscillator strengths for molecules could be hard to compute
- Direct measure of the column density (amount of matter on the line of sight): $N \propto W_{v} / f$

CH absorption towards ζ Per

Emission lines

(b)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Warm gas
- Harder to analyze compared to absorption spectra

Emission lines

Hydrogen

Sodium

Helium

Mercury

\mid	\mid	\mid	\mid	\mid	$\mid-1$	
650	600	550	500	450	400	350

- Lines are „fingerprints" => identification when line frequencies are computed or measured in laboratory

Emission line profiles

(b)

Line profiles

Emission line spectra

Depends on physical conditions and distribution of molecules

Molecular lines: population of energy levels

- Statistical equilibrium of level populations:

$$
\begin{aligned}
& n_{l}\left[\sum_{k<l} A_{l k}+\sum_{k \neq l}\left(B_{l k} J_{\nu}+C_{l k}\right)\right]= \\
& \sum_{k>l} n_{k} A_{k l}+\sum_{k \neq l} n_{k}\left(B_{k l} J_{\nu}+C_{k l}\right)
\end{aligned}
$$

$\boldsymbol{A}_{\boldsymbol{l} \boldsymbol{k}}$ - spontaneous emission
$\boldsymbol{B}_{l k}$ - stimulated emission (absorption)
$\boldsymbol{C}_{\boldsymbol{l} \boldsymbol{k}}$ - collisional excitation (de-excitation)
J_{v} - local mean intensity
$\boldsymbol{n}_{\boldsymbol{j}}$ - level population of the level \boldsymbol{j}

- Critical density for line excitation: $n_{\mathrm{cr}}=A_{u l} / C_{u l}$

Critical densities: examples

- Line data from LAMDA database (Schöier et al. 2005)
- CS J=I-0 line at 48.99 GHz :
$-10 \mathrm{~K}: \mathrm{A}_{10}=1.7510^{-6} \mathrm{~s}^{-1}, \mathrm{C}_{10}=3.4910^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1}: \mathrm{n}_{\mathrm{cr}}=5.010^{4} \mathrm{~cm}^{-3}$

- CS J=7-6 line at 342.883 GHz :

- Presence of high-lying rotational lines indicate high density

Emission lines: diagnostics

- Solving statistical equilibrium equations is numerically challenging
- Local Thermodynamic Equilibrium ($\mathrm{T}_{\text {ex }}=\mathrm{T}_{\text {kin }}$) is often assumed
- Level population follows Boltzmann's distribution:

$$
\frac{n_{u}}{n_{l}}=\frac{g_{u}}{g l} \exp \left[-E_{u l} / k T_{k i n}\right]=\frac{g_{u}}{g l} \exp \left[-E_{u l} / k T_{e x}\right]
$$

- Excitation vs kinetic temperature (general rule):
- High densities ($n \gg n_{c r}$): $\boldsymbol{T}_{\text {ex }} \sim \boldsymbol{T}_{\text {kin }}$
- Low densities ($n \ll n_{\text {cr }}$): $\boldsymbol{T}_{\boldsymbol{e x}}<\boldsymbol{T}_{\text {kin }}$

Molecules as probes of physical conditions

Jes K. Jørgensen (2001)
Based on figure by R. Genzel (1991)
Kinetic Temperature [K]

Opaqueness of the Earth atmosphere

- Blocked: X-ray \& UV (<300nm)
- Mid-IR/sub-mm ($20 \mu \mathrm{~m}-0.3 \mathrm{~mm}$)
- Long radio wavelengths (>10m)

Telescopes and Detectors: key properties

- Collecting area (diameter D) => angular resolution
- D and focal length $=>$ field of view
- Spectral coverage
- Spectral resolution: $\mathrm{R}=\mathrm{v} / \Delta \mathrm{v}$:
- UV-optical: $\mathrm{R}=10^{5}$
- IR: $\quad R \sim 10^{3}-10^{4}$
- Radio: $R=10^{6}$
- Sensitivity (QE) and noise
- Stability, response
- Pixel size, exposure, etc.

First telescope a

- Patent by a Dutch eyeglass
- Galileo Galilei (I609): first
- Moon craters, rings of Satu
- Kepler (16II): two convex

Refractors and reflectors

Diffraction limit

- Accurate observations by Francesco Grimaldi (1660)
- Bending of EM waves through boundaries of aperture
- Airy disk: smallest resolution element
- Atmospheric conditions ("seeing")

Properties of telescopes

- First and foremost: collecting area $S=\pi * D^{2 / 4}$:
- 10 m dish: $79 \mathrm{~m}^{2}$
- 30 m dish: 707 m²
- 100 m dish: 7854 m²
- Angular resolution $\theta^{\prime \prime} \sim 2.1 \times 10^{5} \lambda / D:$
- $100 \mathrm{~nm}(1000 \AA$): $\quad \theta \sim 0.02$ for $D=1 \mathrm{~m}$
- Imm (230 GHz): $\quad \theta \sim 210$ " for $\mathrm{D}=1 \mathrm{~m}$
- Imm (230 GHz): $\quad \theta \sim 2.10$ " for $D=100 \mathrm{~m}$

Properties of telescopes

- Reflectors with parabolic-like mirrors
- Various designs to redirect light to detectors

- UV-near-IR:
- Mirrors made of low thermal expansion glass (Zerodur)
- Metal coating (Al, Ag, Au, Cu)
- IR: optical telescopes with special mirrors ($\mathrm{Be}, \mathrm{SiC}$)
- (Sub)-millimeter antennas:
- Parabolic metallic antenna (Heinrich Herz, 1887)
- Small feed antenna at the focus

Example: Keck IOm telescope

Photographic plates

- First 2D detectors
- I840: J.W. Draper, photo of the Moon
- I858: W. De La Rue, sunspots
- Early 1900s: E. Hubble, galaxies, expansion of the Universe

Jupiter, 1879

- Dominated astronomy for ~ 100 years

Photographic plates

- Emulsion: gelatine + silver-halide grains
- Exposition: Ag+ => Ag,Ag- => Ag2 =>...)
- Alkaline solution: Silver halide grains => Silver metal
- Acidic stop bath

Photographic plates

- Very low QE (I-4\%), non-linear response
- Very small "pixels" (grains of silver compounds)
- Hard to digitize
- Unique photo plate libraries (variability, stellar motions):
e.g. Harvard College Obs (>|30 years, >500,000 plates)

- Photon counting devices (>1934)
- Each photon produces e-cascade (from I to $10^{8} \mathrm{e}$-)
- Efficient at UV, 300-I200 nm
- Moderate QE (I0-20\%), linear response
- Easily coupled to digital outputs

Photomultiplier tubes

- Must be operated at high voltages (>2000V)
- High light levels can destroy the tube
- Not very efficient in optical region
- Single channel devices
- Used to measure sky objects' fluxes

Semiconductors

- Invented 1969 in AT\&T Bell Labs by

Boyle \& Smith (Nobel prize 2009)

- 2D pixel arrays
- Photoactive + transmission layer
- Read out charges in a staged fashion
- Truly digital
- Very high QE up to $\mathbf{> 9 5 \%}$

Light Bucket Analogy

Quantum Efficiency of detectors

UV-optical detections

- Selection rules are not as restrictive (e.g. H_{2} and N_{2} do not usually emit at IR and radio)
- Strength:
- CCD => high quality spectra
- Weakness:
- Some molecules do not have intense electronic transitions
- Dissociative excited states lead to broad features
- FUV is only accessible from space

UV-optical telescopes

- Ground-based:Very Large Telescope (8.2 m), Keck (IO m), Gemini (8.2 m), Large Binocular Telescope (10 m), Subaru (8 m), Palomar (5 m),...
- Space: Hubble (2.4 m), Copernicus (0.5 m), FUSE (0.7 m),...
- Resolution: <0.I"

\mathbf{H}_{2} absorption lines in diffuse ISM

Hubble: H_{2} in translucent cloud HD 147888

HST (I995): gas and dust in Eagle nebula (Serpens)

Exoplanets around HR 8799 (Keck IOm)

Infrared detections

- Polyatomic molecules and ices
- Intense vibrational transitions: $\mathrm{H}_{2} \mathrm{CO}, \mathrm{OH}$, benzene, $\mathrm{C}_{3}, \mathrm{C}_{5}$
- Strength:
- Numerous (ro-)vibrational lines => identification
- High sensitivity
- Weakness:
- Atmosphere is largely opaque
- Limited space missions
- A less precise identification than via radio (resolution)

IR telescopes

- IRAS (I983): $0.6 \mathrm{~m}, \mathrm{I} 2$-I00 $\mu \mathrm{m}=>$ first sky survey, warm dust (β Pictoris disk)
- Infrared Space Observatory (I995-I998): 0.6 m, 2.5-240 $\mu \mathrm{m}=>\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$, star formation
- Spitzer Space Telescope (2003-2009): 0.85 m , 3 -I $80 \mu \mathrm{~m}=>$ high-sensitivity imaging, molecules and ices, exoplanets, first stars, galaxies
- Herschel Space Observatory (2009-2012): 2.4 m, 60-670 $\mu \mathrm{m}=>$ high-sensitivity imaging, molecules (HD, O_{2}) and ices, star formation, starburst galaxies

James Webb Space Telescope

- JWST (launched on Christmas of 2021)
- 6.5 m I8-segment mirror (Gold-plated Be)
- L2 orbit (Passive Cooling to 45 K)
- Life >10 years
- Four cryogenic science instruments:

- Near-Infrared Camera (NIRCam): 2.2'x4.4', 0.6-5 $\mu \mathrm{m}$
- Near-IR Spectrometer (NIRSpec): 3.4'x3.4', I-5 $\mu \mathrm{m} ; \mathrm{R}=100,1000,2700$
- Mid-Infrared Instrument (MIRI): 5-27 $\mu \mathrm{m}$, imager, coronograph, medium resolution spectrograph (MRS), 3.7'x3.7' - 7.7'x7.7'
- Fine Guidance Sensor: stabilisation of the line-of-sight

Detection of fullerenes $\left(C_{60} \& C_{70}\right)$

Buckyballs In A Young Planetary Nebula
NASA / JPL-Caltech / J. Cami [Univ. of Western Ontario/SETI Institute)

Spitzer Space Telescope • IRS

O_{2} in Orion, 487-l|2I GHz, Herschel

Goldsmith et al. (201I)

Gas and dust in Eagle nebula (Serpens)

Radio observations

- Unambiguous detection of molecular species
- Line strengths scale with square of the dipole moment
- Strength:
- Observation of several lines at expected frequencies
- High sensitivity
- Weakness:
- Bias towards polar molecules
- Symmetric species cannot be observed

History of radio telescopes

- I929: Karl Jansky (Bell Telephone Labs): Milky

Way radio emission (20.5 MHz)

- 1930s: Grote Reber, first radio astronomer,
first parabolic antenna: Cyg A, Cas A
- 1940s:WWII, radar: 21 cm H line (Jan Oort)
- I960s: Single-dish \& Interferometers

Radio interferometry

- Antenna pairs (one baseline): interference
- Combination of signals from N antennas: $\mathrm{N}(\mathrm{N}-\mathrm{I}) / 2$ baselines
- Angular resolution is determined by largest baselines!

Aperture synthesis

- Sir Martin Ryle, 1974 Nobel Prize in Physics
- Sample $V(u, v)$ at many (u, v) points using distributed aperture antennas to synthesize a large aperture antenna

Sir Martin Ryle 1918-1984 of size $\left(u_{\text {max }}, v_{\text {max }}\right)$

- One pair of antennas = one baseline, two $\mathrm{V}(\mathrm{u}, \mathrm{v})$ samples
- Use Earth rotation to fill in (u,v) plane over time
- Reconfigure N antennas for more samples

Example: Fringe pattern with 2 Antennas (I baseline)

32 Antennas - Instantaneous

(Sub-)millimeter telescopes

- Single-dish: IRAM 30 m , GBT 100 m , APEX 12 m , Effelsberg 100m, Nobeyama 45m, ...

Typical beam sizes $12-30$ "

- Interferometers:

NOEMA $12 \times 15 \mathrm{~m}$, SMA $8 \times 6 \mathrm{~m}$, eVLA $27 \times 25 \mathrm{~m}$, ALMA $50 \times 12 \mathrm{~m}+16 \times 7 \mathrm{~m}$

Typical beam sizes:
100 GHz:0.1-5"
230 GHz: 0.03-I"

ALMA interferometer

- 50 I2-m + I2 7-m antennas at 5,000 m (Chile)
- ~5000 m² area
- Frequencies: 86-950 GHz (250 $\mu \mathrm{m}-\mathrm{I} \mathrm{mm})$
- Resolution: 0.01" @ 950 GHz

IR vs (sub-)mm telescopes

Submillimeter:

- High spectral resolution ($\mathrm{R}>10^{6},<0.1 \mathrm{~km} / \mathrm{s}$)
- Gas-phase molecules: abundances > $\mathrm{I}^{-1 I}$
- Mapping of emission
- Ground-based (<I THz), long lifetime

Infrared:

- Moderate spectral resolution ($\mathrm{R} \sim 10^{3}-10^{4}$)
- Gases and ices: abundances > $10-8$
- Probe major reservoirs of C, N and O
- Molecules without permanent dipole moments $\left(\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \ldots\right)$
- Absorption \& emission
- Often in space => must be cryogenically cooled => short lifetime

Orion KL Survey, 3 mm, IRAM 30-m

Tercero et al. (2010)

Protoplanetary Disks with ALMA: thermal dust emission at 1.25 mm

S.Andrews ea (2018)

Protoplanetary Disks with ALMA: molecular lines

Comparison of observational facilities

Wavelength

Suggested literature

- A. G.G.M.Tielens, "The Physics and Chemistry of the ISM" (2007), Cambridge Uni. Press
- G. Rieke,"Detection of light" (2003), Cambridge Uni. Press
-T. Wilson et al., "Tools of Radioastronomy" (2009), Springer
- F. R. Chromey, " To Measure the Sky:An Introduction to Observational Astronomy" (2010), Cambridge Uni. Press
- E. C. Sutton, "Observational Astronomy:Techniques and Instrumentation" (201I), Cambridge Uni. Press

Heidelberg Joint Astronomical Colloquium

Winter Semester 2022 - Tuesday November 8th, 16:00
Main Lecture Theatre, Philosophenweg 12

Simon Portegies Zwart

(Sterrewacht Leiden):

How the Sun and its

 siblings were born as a Family but drifted apartThe figure shows a face-on view of the Galaxy with the Sun's orbit and the cloud of asteroids following in its wake

Those unable to attend the colloquium in person are invited to participate online through Zoom. More information is given on HePhySTO: https://www.physik.uni-heidelberg.de/hephysto/

