Structure of the ICM and its Evolution with Redshift: Status from SZE Observations

Joe Mohr

Department of Astronomy, Department of Physics National Center for Supercomputing Applications University of Illinois

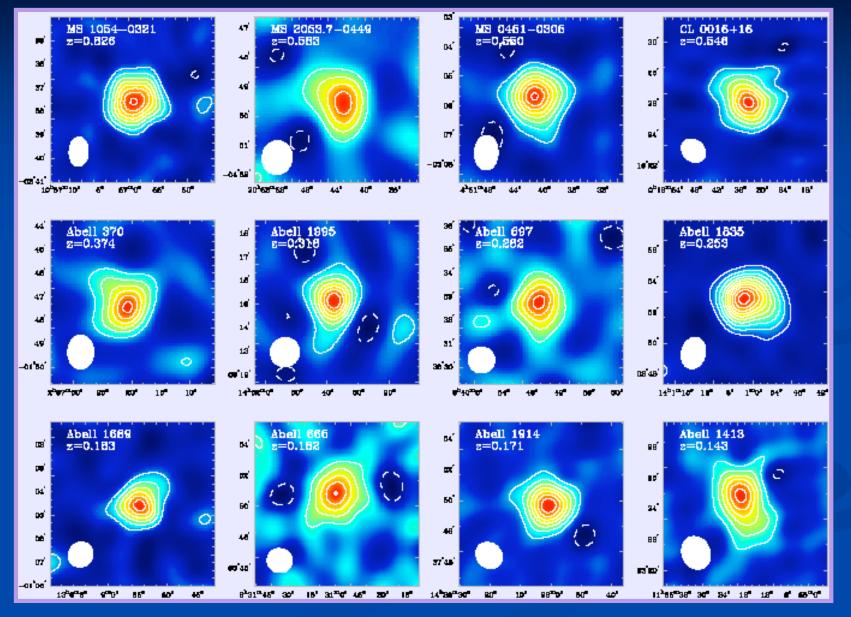
Outline

- Existing SZE analyses
- Cluster selection in the SZE

SZE Data and Analyses

• The instruments

- Bolocam, BIMA/OVRO, Ryle, SuZIE, ACBAR
- AMI, AMIBA and SZA
- ACT, APEX and SPT
- The science
 - Distance measurements
 - Gas masses
 - SZE scaling relations
 - SZE cluster surveys



J. Mohr (U Illinois)

Sample from 60 OVRO/BIMA imaged clusters, 0.07 < z < 1.03

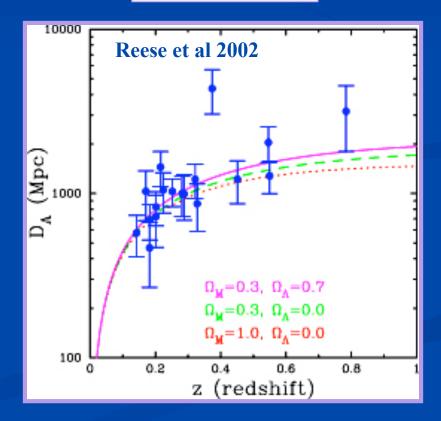
J. Mohr (U Illinois)

Measuring Cluster Sizes and Distances

• X-ray surface brightness I_x

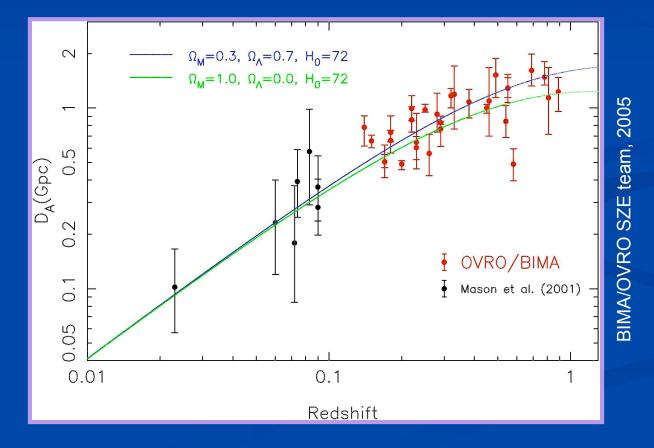
$$I_{x}(R) = \frac{1}{4\pi(1+z)^{4}} \frac{\mu_{e}}{\mu_{H}} \int dl \, n_{e}^{2}(l,R) \Lambda(T_{e})$$

• SZE Decrement ΔT

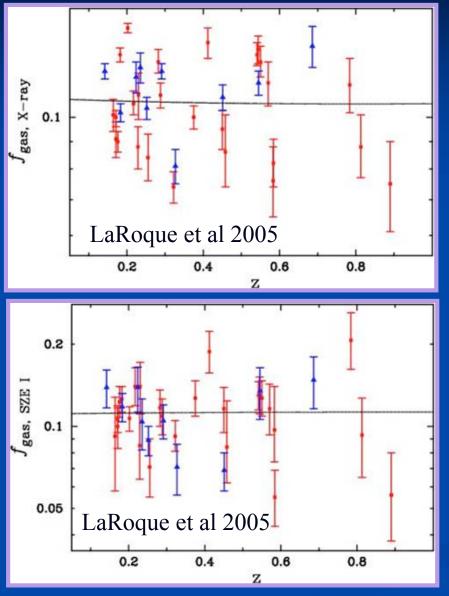

$$\frac{\Delta T(R)}{T_{cmb}} = -2 \frac{\sigma_T}{m_e c^2} \int dl \, n_e(l, R) \, k_B T_e(l, R)$$

Mason et al 2001 (7 distances) Udomprasert et al 2004 (7 distances) Jones et al 2005 (5 distances) Reese et al 2002 measured distances to 18 clusters (BIMA/OVRO+ROSAT), constraining Hubble parameter to

$$H_o = 60_{-4-18}^{+4^{+13}} \text{ km/s/Mpc}$$


Clusters as Isothermal, Constant Density Spheres

$$I_{xo} \approx 2Rn^2 \Lambda(T_e)$$
$$\Delta T_o \approx T_{cmb} 2RnT_e$$



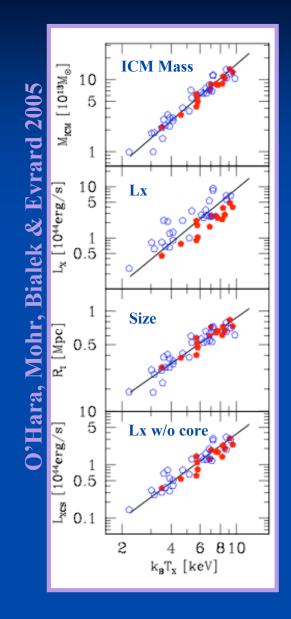
The SNe Ia Experiment with Clusters?

They have recently expanded their sample to 28 and are using Chandra X-ray data to measure distances. In combination with local distance measurements of Mason et al (2001), they can begin to probe the dark energy.

Recent Gas Mass Fractions

Gas mass fractions can be used to constrain Ω_m (SZE: Mason et al 2001, Grego et al 2001, Lancaster et al 2005)

Comparison between X-ray and SZE derived gas mass fractions allows one to constrain clumping in the gas.

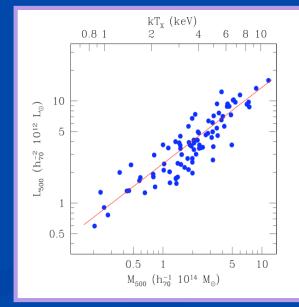

This sample of 28 shows good agreement- no evidence for clumping

 $f_g(X-ray) = 0.109 \pm 0.003$ $f_g(SZE) = 0.115 \pm 0.005$

J. Mohr (U Illinois)

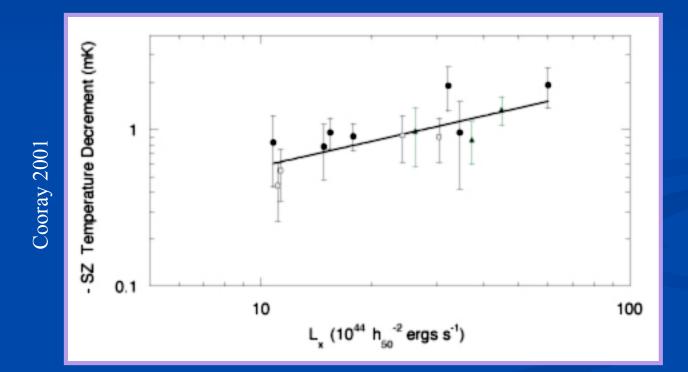
Cluster Scaling Relations

- The relationships among crude cluster observables like luminosity, temperature, isophotal size, mass, and galaxy number provide a wealth of information
 - Slopes of scaling relation reveal departures from self-similarity (preheating, cooling, galaxy processing, etc)
 - Amplitudes and redshift evolution of scaling relations are critically important for analyses of clusters and surveys
 - Scatter about scaling relations provides quantitative measure of similarity of galaxy, gas and dark matter properties for a cluster of a given mass
 - Clusters are, to a large degree, a one parameter family where mass is the fundamental parameter

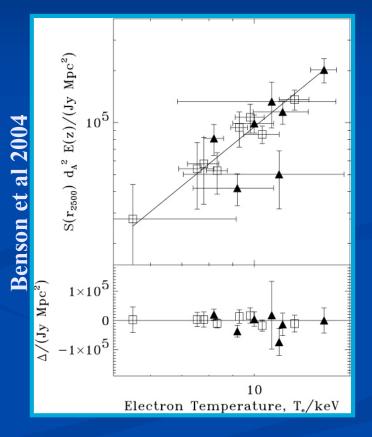

Observed Scaling Relations

- X-ray scaling relations are well established
- Optical and NIR scaling relations are being established (I am pleased that people are focusing on the virial region rather than fixed metric regions- *It's time to retire Sir Abell and his Radius*)

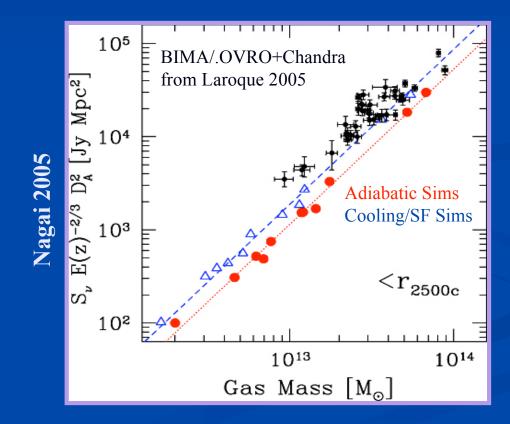
• But what about SZE scaling relations?


۲

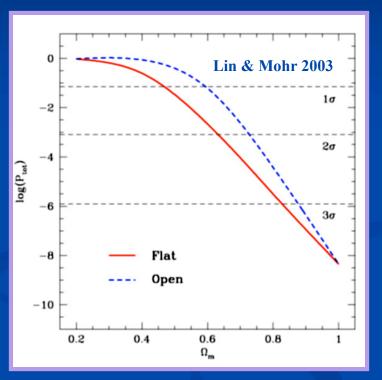
J. Mohr (U Illinois)


Cluster SZE Scaling Relations

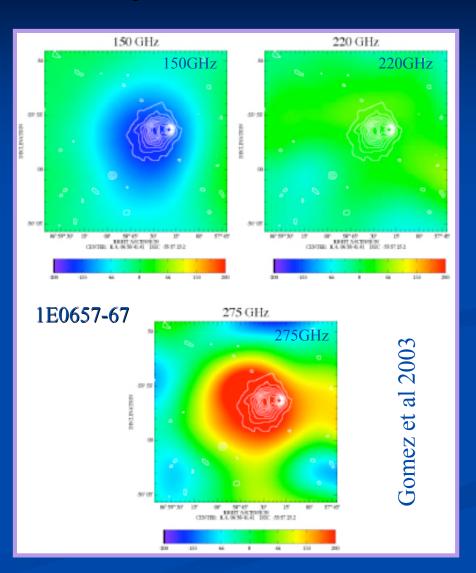
- Asantha Cooray published the first SZE scaling relation
 - Central SZE decrement versus X-ray luminosity for 14 clusters, where data are culled from the literature from a variety of sources


Cluster SZE Scaling Relations

- SuZIE II observations of 15 clusters by Sarah Church's group have yielded the second SZE scaling relations
- Slope is consistent with self-similar expectation, and redshift evolution is *detected* with 90% confidence. Also claim to see CC related effects (?)
- Signal to noise is still an issue, but with instruments like the SZA and AMI it should be possible to examine the intrinsic scatter in SZE-X-ray scaling relations starting very soon


Cluster SZE Scaling Relations

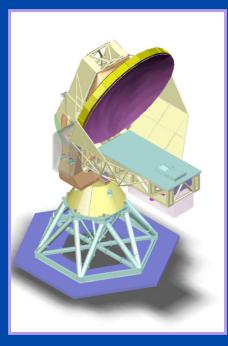
- BIMA/OVRO observations also provide a scaling relation, which has been compared to scaling relations in hydrodynamical simulations
 - Integrated SZE within R_{2500} versus M_{icm} within r_{2500}
 - Expectation is that the intrinsic SZE luminosity- mass relation will have very small scatter and be rather insensitive to the thermodynamic history of the ICM...


SZE Surveys

- SZE "Blind surveys" have so far been aptly named
- Nevertheless, there have been some scientific successes
 - Subha Majumdar carried out the first SZE survey analysis (Majumdar and Subrahmanyan 2000)
 - Result: Ω_m must be low given 1) ATCA upper limits on arcminute scale anisotropy + 2) COBE anisotropy constraints
 - Lin and Mohr (2003) carried out second SZE survey analysis
 - Result: Ω_m must be low given 1) non-detections in 0.1 deg² *deep* BIMA anisotropy fields (Holzapfel et al 2001) + 2) COBE anisotropy constraints
 - Dawson et al have pursued even deeper BIMA/OVRO fields and some optical followup, but no solid cluster candidates have emerged

ACBAR Survey

- ACBAR (led by Bill Holzapfel) is a multifrequency, 4 arcminute beam bolometer deployed on the 2.5m Viper telescope at the South Pole
 - Beam scale (similar to Planck high frequency) has made it challenging to separate cluster signal from the primary CMB anisotropy
 - Have targeted known clusters
 - Observations of a new ACBAR deep field are just now ending


New Generation of SZE Interferometers

- SZA and AMI are online (first results in review talk by Clem Pryke tomorrow)
 - 100X more sensitive than BIMA/OVRO
- AMiBA expected by the end of the year
 - Even more sensitive than SZA and AMI

Arcminute Resolution, Multi-frequency CMB Mapping Telescopes

- Atacama Pathfinder Experiment (APEX)- 12m w / 150 bolometers
 - MPIfR + UC Berkeley, engineering run Dec '05, science Spring '06
- Atacama Cosmology Telescope- 6m w/10³ bolometers
 - Led by Lyman Page, 2007 deployment
- South Pole Telescope (SPT)- 10m w / 10³ bolometers
 - Led by John Carlstrom, Nov '06-Jan'07 deployment

Ringberg Cluster Workshop 2005

(SZE) Cluster Survey Cosmology

- Precision cosmology with samples of 10⁴ clusters requires new approaches
 - Cluster redshifts using photo-z's
 - Cluster mass-observable scaling relations must be calibrated
 - from within: dN/dz + P(k) + dN/dM(z) (self-calibration)
 - from without: crude (but unbiased) weak lensing mass measurements
 - Scatter about relations must be measured to 10% accuracy (Lima & Hu 2005)
 - Cluster selection must be well understood (1% to 5% level)
 - Require moderate solid angle, medium-depth X-ray survey to calibrate SZE selection
- Multiwavelength approach required

Overview

SZE observations with available instruments have been used successfully to study the ICM and cosmology

- X-ray+SZE distances measured
- SZE gas mass fractions
- SZE scaling relations
- SZE surveys have been attempted

New generation of interferometers are online now

- AMI and SZA are approximately 100 times more sensitive than BIMA/OVRO
- Cluster science and targeted surveys imminent

Large scale SZE Survey Cosmology has arrived before the instruments!

- APEX, ACT and SPT will all come on line within 1.5yrs...
- Cluster radio galaxies may be a challenge even for the high frequency experiments-Yen-Ting Lin is leading a multi-frequency survey of a sample of ~200 known cluster radio galaxies to better constrain their spectra up to 43GHz. Obs at 90GHz with SZA are likely. Observations with APEX, ACT and SPT guaranteed (unfortunately!)
- Preparations underway for coordinated, multiwavelength survey fields where cluster selection can be measured (X-ray component very important)