Ringberg Workshop on Distant Clusters of Galaxies, October 2005

The chemical enrichment of the IntraCluster Mediumat high redshifts

Paolo Tozzi

with I. Balestra, S. Ettori, P. Rosati, S. Borgani, V. Mainieri, M. Viola, C. Norman

High redshift (z>0.3) clusters in mediumdeep Chandra exposures (ACIS-I and ACIS-S)

Science: Scaling relations (temperature, luminosity, mass entropy) Chemical enrichment AGN around clusters Baryon fraction and cosmological test

Distribution with temperature and redshift of the sample

We select from the Chandra archive 55 clusters at z>0.3 (among them 7 clusters at z>1)

We sample central regions between 0.15 and 0.3 R_{vir} depending on the redshift of the cluster

Fe Ions concentration as a function of the ICM temperature

The Iron abundance is determined almost uniquely by the K-shell complex at 6.7-6.9 keV rest-frame

Detection of the Fe line of the most distant X-ray clusters

Z=0.35

RXJ1252 ~1000 net counts 180 ks with ACIS-I Rosati et al. 2004

(nusali ci al. 2000)

Detection of the Fe line of the most distant X-ray clusters

ndra+XMM observation of RXJ1252

Rosati et al. 2003

Temperature and Fe abundance from Chandra+XMM (MOS) combined fit

RXJ1252: first detection of the Fe line at z=1.23

Redshift measure from Chandra+XMM (MOS) combined fit

Temperature vs redshift (55 clusters @ z> 0.3) 3 times more objects than in Tozzi et al. 2003

Fe abundance-Temperature in different redshift bins

Scatter comparable with statistical errors hint of higher Fe abundance at low kT<5 keV

Iron abundance - Temperature

Local sample 273 clusters observed with ASCA

Horner 2001 PhD Baumgartner et al. 2005

Grevesse & Sauval 1998

18 local clusters observed with ASCA

Finoguenov, Arnaud & David 2001

XMM-Grating data from cool core cluster

Peterson et al. 2003

Is it due to cool core with Iron excess?

What is the nature of low temperature, Iron rich clusters? A typical example: V14156, z=0.4

Investigating the nature of Fe-rich clusters: Simulated XMM spectrum of V1416 - 50 ksec

Why low-temperature clusters have high Iron abundance? The case at 0.2 < z < 0.5

Iron abundance versus redshift

Balestra et al. 2005

Average Iron abundance versus redshift

Balestra et al. 2005

Is the Iron abundance evolution expected?

Fe abundance in the ICM from the observed cosmic Star Formation Rate with different delay times for TyIa Sne

Ettori et al. 2005

Abundance ratios at z~1 as diagnostic tool

Can we measure the α elements at high redshifts through the stacking technique?

Residual of the spectra with respect to the bremmstrahlung only model

Ettori et al in progress

CONCLUSIONS

A sample of ~55 clusters @ z>0.3 observed with Chandra

Clear detection of the Iron line in the large majority of high-z clusters, up to z~1.3

Correlation in the Iron abundance – Temperature: Iron abundance is larger below 5 keV (and possibly drops again below 2 keV)

Fe abundance ~ 0.25 Z_{\odot} constant for z>0.5

Higher average Fe abundance in the z~0.4 redshift bin

If decrease of the average Iron abundance from $Z_{Fe}=0.4 Z_{\odot}(@z\sim0.3)$ to $Z_{Fe}=0.2 Z_{\odot}$ (z~1.3), consistent with cosmic star formation rate (see also talk by Luca Tornatore)