
A&A 474, 911–922 (2007)
DOI: 10.1051/0004-6361:20077692
c© ESO 2007

Astronomy
&

Astrophysics

Unveiling the nature and interaction of the intermediate/high-mass
YSOs in IRAS 20343+4129�

Aina Palau1,2, R. Estalella2, P. T. P. Ho3,4, H. Beuther5, and M. T. Beltrán2

1 Laboratorio de Astrofísica Espacial y Física Fundamental, INTA, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain
e-mail: apalau@laeff.inta.es

2 Departament d’Astronomia i Meteorologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Catalunya, Spain
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4 Academia Sinica, Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei, 106, Taiwan
5 Max-Planck-Institut for Astronomy, Koenigstuhl 17, 69117 Heidelberg, Germany

Received 23 April 2007 / Accepted 23 August 2007

ABSTRACT

Context. IRAS 20343+4129 was suggested to harbor one of the most massive and embedded stars in the Cygnus OB2 association,
IRS 1, which seemed to be associated with a north-south molecular outflow. However, the dust emission peaks do not coincide with
the position of IRS 1, but lie on either side of another massive Young Stellar Object (YSO), IRS 3, which is associated with centimeter
emission.
Aims. The goal of this work is to elucidate the nature of IRS 1 and IRS 3, and study their interactions with the surrounding medium.
Methods. The Submillimeter Array (SMA) was used to observe with high angular resolution the 1.3 mm continuum and CO (2–1)
emission of the region, and we compared this millimeter emission with the infrared emission from 2MASS.
Results. Faint millimeter dust continuum emission was detected toward IRS 1, and we derived an associated gas mass of ∼0.8 M�.
The IRS 1 Spectral Energy Distribution (SED) agrees with IRS 1 being an intermediate-mass Class I source of about 1000 L�, whose
circumstellar material is producing the observed large infrared excess. We have discovered a high-velocity CO (2–1) bipolar outflow in
the east-west direction, which is clearly associated with IRS 1. Its outflow parameters are similar to those of intermediate-mass YSOs.
Associated with the blue large-scale CO (2–1) outflow lobe, detected with single-dish observations, we only found two elongated low-
velocity structures on either side of IRS 3. The large-scale outflow lobe is almost completely resolved out by the SMA. Our detected
low-velocity CO structures are coincident with elongated H2 emission features. The strongest millimeter continuum condensations
in the region are found on either side of IRS 3, where the infrared emission is extremely weak. The CO and H2 elongated structures
follow the border of the millimeter continuum emission that is facing IRS 3. All these results suggest that the dust is associated with
the walls of an expanding cavity driven by IRS 3, estimated to be a B2 star from both the centimeter and the infrared continuum
emission.
Conclusions. IRS 1 seems to be an intermediate-mass Class I YSO driving a molecular outflow in the east-west direction, while
IRS 3 is most likely a more evolved intermediate/high-mass star that is driving a cavity and accumulating dust in its walls. Within and
beyond the expanding cavity, the millimeter continuum sources can be sites of future low-mass star formation.

Key words. stars: formation – ISM: individual objects: IRAS 20343+4129 – ISM: dust, extinction – ISM: clouds

1. Introduction

On the northeastern side of the Cygnus OB2 association, and
at 1.4 kpc of distance from the Sun (Le Duigou & Knödlseder
2002; Sridharan et al. 2002) there is a rimmed feature bright at
centimeter wavelengths (Carral et al. 1999) and in the H2 emis-
sion line at 2.12 µm (Kumar et al. 2002), which harbors at its
center the source IRAS 20343+4129. This IRAS source is a
high-mass protostar candidate of 3200 L� (Sridharan et al. 2002)
embedded in dense gas (Richards et al. 1987; Miralles et al.
1994; Fuller et al. 2005; Fontani et al. 2006). When observed
with high angular resolution, two bright nebulous stars, IRS 1
(north) and IRS 3 (south), are found inside the IRAS error el-
lipse (Kumar et al. 2002). Either or both sources might account
for the bulk of the total luminosity of the IRAS source. Comerón

� SMA data used for Figs. 1 and 2 is only available in electronic
format at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/474/911

et al. (2002) carried out a study of the red and massive objects
in the entire Cygnus OB2 association and conclude that IRS 1
may be one of the most luminous and deeply embedded mem-
bers of the OB association, based on 2MASS JHK photometry
and spectroscopy in the range 1.5–2.4 µm. Extending southward
from IRS 1 and surrounding IRS 3, there is H2 line emission
in a fan-shaped structure which corresponds very well with a
blueshifted CO (2–1) lobe detected in single-dish observations
by Beuther et al. (2002b). The CO structure found by these au-
thors is bipolar, and the redshifted lobe is centered on IRS 1, sug-
gestive of a north-south molecular outflow. Kumar et al. (2002)
detect extended H2 emission in the east-west direction toward
IRS 1, and attribute this emission to arise in a circumstellar disk,
perpendicular to the north-south outflow. Although all these ob-
servations seem to indicate that IRS 1 is a high-mass YSO, no
significant amount of ionized gas is found associated with IRS 1
(Carral et al. 1999). The only compact centimeter continuum
source in the region is associated with IRS 3, which is interpreted
as an Ultra Compact H ii (UCH ii) region ionized by a B2 star
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(Miralles et al. 1994; Carral et al. 1999). Single-dish observa-
tions at 1.3 mm reveal two millimeter continuum peaks lying on
either side of IRS 3 (Beuther et al. 2002a; Williams et al. 2004).
Thus there is no clear evidence on whether IRS 1 and/or IRS 3
is the infrared source producing most of the IRAS luminosity,
and their relation with the dust condensations and the outflow
emission remains unclear.

In this paper we present SMA observations of the contin-
uum emission at 1.3 mm and the CO (2–1) emission toward
IRAS 20343+4129. Our data provide an angular resolution six-
teen times better in area than that of the single-dish observations,
allowing us to gain insight into the nature of each source in the
region.

2. Observations

The SMA1 (Ho et al. 2004) was used to observe the 1.3 mm
continuum emission and the CO (2–1) (230.53796 GHz) emis-
sion toward IRAS 20343+4129. The observations were carried
out on 2003 August 3, with 6 antennas in the array. We note
that this was one of the first days for the SMA to work with
6 antennas. The phase center was α(J2000) = 20h36m07.s3,
δ(J2000) = +41◦39′57.′′20, and the projected baselines ranged
from 13.1 to 119.8 m. The pads of the antennas were 1, 4, 5,
8, 11, and 16, which correspond to a hybrid between the com-
pact and extended configurations. System temperatures were
around 200 K. The full bandwidth for each sideband at that
time was 0.984 GHz, and each sideband was divided into three
blocks with four basebands in each block. The correlator was
set to the standard mode, which provided a spectral resolution of
0.8125 MHz (or 1.06 km s−1 per channel) across the full band-
width of 1 GHz. The FWHM of the primary beam at 230 GHz
was ∼45′′.

The raw visibility data were flagged and calibrated with the
MIR-IDL2 package. The passband response was obtained from
observations of Uranus, which provided flat baselines when ap-
plied to Neptune. The baseline-based calibration of the ampli-
tudes and phases was performed by using the source 2015+371.
Typical rms of the phases was ∼60◦, yielding a positional uncer-
tainty of ∼0.′′5. Flux calibration was set by using Uranus, and the
uncertainty in the absolute flux density scale was ∼20%.

Imaging was conducted using the standard procedures in
AIPS (for the line), and MIRIAD (for the continuum; Sault
et al. 1995). The channel maps were cleaned adding a value
for the zerospacing parameter of 100 Jy (estimated from the
single-dish observations of Beuther et al. 2002b) in the IMAGR
task of AIPS, and using different clean boxes. The continuum
map was made using only the lower sideband and excluding
the CO (2–1) line (the upper sideband was noisier and com-
bining both sidebands did not result in a higher S/N). We used
three clean boxes to clean the continuum, one box for each con-
densation detected with single-dish, and the other box toward
IRS 1. Cleaning with these boxes minimized the negative side-
lobes in the final cleaned map. The final synthesized beam is
3.′′47 × 2.′′64, with PA = −38.◦0, the rms noise of the continuum
map is 2 mJy beam−1, and the rms noise of the 2.11 km s−1 wide
channel maps is 0.4 Jy beam−1.

1 The Submillimeter Array is a joint project between the Smithsonian
Astrophysical Observatory and the Academia Sinica Institute of
Astronomy and Astrophysics, and is funded by the Smithsonian
Institution and the Academia Sinica.

2 The MIR cookbook by C. Qi can be found at
http://cfa-www.harvard.edu/∼cqi/mircook.html

3. Results

3.1. Continuum

Figure 1 shows the continuum emission observed with the SMA
at 1.3 mm. The emission is found basically toward three posi-
tions in the field: to the west of IRS 3 (where we found the
strongest condensations, detected up to 18σ), to the east, and
to the north of IRS 3 (where we found condensations up to 9σ).
The condensations to the west and to the east of IRS 3 are co-
incident with the single-dish peaks of emission (Beuther et al.
2002a), and are not associated with any infrared source. The
emission to the west of IRS 3 contains four condensations, MM1
to MM4, with a total flux density of 230 mJy (corrected for the
primary beam response), while the emission to the east has one
condensation, MM7, of only 28 mJy. This is different from the
single-dish measurements, for which the eastern condensation is
stronger than the western condensation by almost a factor of 2.
We estimated that the SMA has picked up only 2% of the flux
density of the single-dish eastern condensation (of ∼30′′ in size),
and 30% of the flux density of the single-dish western conden-
sation (of ∼20′′). Thus, the emission of the eastern condensation
is essentially extended, and has been filtered out by the SMA,
while the emission in the western condensation consists of dif-
ferent compact millimeter sources.

In Table 1 we list the position, peak intensity, flux density
and mass for each millimeter continuum condensation detected
above 5σ. In the derivation of the masses, we assumed that all
of the continuum emission is dust emission which is optically
thin, and adopted a gas-to-dust mass ratio of 100 and a dust
mass opacity coefficient at 1.3 mm of 0.9 cm2 g−1 (agglomer-
ated grains with thin ice mantles in protostellar cores of densi-
ties ∼106 cm−3; Ossenkopf & Henning 1994). There is a factor
of 4 in the uncertainty of the masses due to uncertainties in the
opacity law. As for the dust temperature, we found two estimates
in the literature. From NH3 observations toward this region,
Miralles et al. (1994) derive a rotational temperature of ∼20 K,
which can be considered a lower limit for the dust temperature,
as gas from protostellar envelopes is mainly heated by collisions
with warm dust grains (e.g., Ceccarelli et al. 1996). On the other
hand, by fitting two greybodies to the spectral energy distribu-
tion of IRAS 20343+4129, Sridharan et al. (2002) obtain a dust
temperature Td for the cold component of 44 K. However, in this
last estimate of Td, the flux densities were measured with single-
dish telescopes with angular resolutions between 10′′ and 100′′,
including the contribution from IRS 1, IRS 3 and other sources
in the region. Thus, Td = 44 K can be considered an upper limit.
We adopt the intermediate value of Td = 30 K.

The mass of MM7 is ∼0.7 M�, and the total mass of MM1 to
MM4 is ∼6 M�. As a reference, the masses derived for the east-
ern and western single-dish condensations are 44 and 23 M�, re-
spectively (Beuther et al. 2002a, 2005; the authors adopt a dust
temperature and an opacity law that yield masses very similar
to those obtained using our assumptions). Thus, the millimeter
compact sources detected with the SMA are embedded in a more
massive gas halo. For MM6, the dust condensation associated
with IRS 1, we obtained a mass of ∼0.8 M�. There is one con-
densation, MM5, 5′′ to the north of IRS 1 that is slightly offset
(∼2′′) to the west of the infrared source IRS 1N (Fig. 1). Since
the SMA and 2MASS positional uncertainties are 0.′′5 and 0.′′6
(Skrutskie et al. 2006), respectively, it is not clear from our data
whether MM5 is associated with IRS 1N or is tracing a different
source. Finally, we did not detect IRS 3 at 1.3 mm, setting an
upper limit for its cirmcumstellar mass of ∼0.2 M�. It is worth



Aina Palau et al.: Star formation in IRAS 20343+4129 913

Fig. 1. White (positive) and thick grey (negative) contours: SMA continuum emission at 1.3 mm towards the IRAS 20343+4129 region, obtained
with natural weighting. Contours are −3, 3, 6, 9, 12, 15, and 18 times the rms noise, 2 mJy beam−1. The synthesized beam, shown in the bottom
right corner, is 3.′′5 × 2.′′6, at PA = −38.◦0. Thin grey contours: 3.6 cm emission obtained with the VLA (Sridharan et al. 2002). Contours are 3,
6, and 9 times the rms noise, 0.2 mJy beam−1. Grey scale: H2 emission (continuum plus line) at 2.12 µm from Kumar et al. (2002). The crosses
correspond to infrared sources from the 2MASS Point Source Catalog (PSC).

Table 1. Parameters of the sources detected above 5σ at 1.3 mm in the
IRAS 20343+4129 region.

Positiona Ipeak
ν

b S b
ν Massc

Source α(J2000) δ(J2000) (mJy beam−1) (mJy) (M�)
MM1 20:36:05.56 +41:40:00.2 26.8 44.8 1.2
MM2 20:36:06.30 +41:40:00.7 40.5 40.5 1.0
MM3 20:36:06.31 +41:39:56.4 29.9 34.0 0.9
MM4 20:36:06.62 +41:40:00.6 39.7 45.3 1.2
MM5 20:36:07.49 +41:40:12.8 25.8 34.8 0.9
MM6d 20:36:07.56 +41:40:08.0 16.9 31.5 0.8
MM7 20:36:08.19 +41:39:54.8 16.7 28.0 0.7

a Positions corresponding to the intensity peak.
b Corrected for the primary beam response.
c Masses derived assuming a dust temperature of 30 K, and a dust mass
opacity coefficient from Ossenkopf & Henning (1994, see main text).
The uncertainty in the masses due to the opacity law is estimated to be
a factor of 4.
d Associated with IRS 1.

noting that IRS 3 is the only source associated with centimeter
continnum emission in the field (see Fig. 1, and Sect. 4.2).

3.2. CO (2–1)

Channel maps of the CO (2–1) emission are displayed in Fig. 2.
CO (2–1) emission extends from −2 up to 33 km s−1, with the

systemic velocity being 11.5 km s−1. The strongest CO (2–1)
feature is associated with IRS 1, and spans several channels for
blueshifted and redshifted velocities, as can be seen also in the
spectrum of the CO (2–1) emission toward IRS 1 (Fig. 2).

The map of the low-velocity emission, integrated from 8.4
to 14.8 km s−1, is shown in Fig. 3. From the figure, we can
see clearly the association of CO (2−1) with IRS 1, as well as
the presence of low-velocity components southwards of IRS 1
and surrounding IRS 3 that are associated with the large-scale
CO(2−1) blueshifted lobe from Beuther et al. (2002b). It is
worth noting that the two elongated structures on either side of
IRS 3 seem to be associated with the fan-shaped structure found
in H2 by Kumar et al. (2002).

Regarding the high velocities, these are only present in the
immediate surroundings of IRS 1. Figure 4a plots the integrated
high-velocity emission toward IRS 1. Blue velocities have been
integrated from −6.4 to 8.5 km s−1, and red velocities from 14.7
to 32.8 km s−1. The high-velocity CO (2–1) emission has a bipo-
lar structure, with the center at the position of IRS 1, and is elon-
gated in the east-west direction. Note that the red lobe splits up
into two subcomponents.

A position-velocity (p-v) plot obtained toward IRS 1 in the
east-west direction is shown in Fig. 4b. Up to ±8′′ from the zero
offset position, the emission shows a bipolar morphology, reach-
ing high-velocities that are blueshifted for positive offsets (to
the east), and redshifted for negative offsets (to the west). The
distance from IRS 1 where we find high velocities allows us
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Fig. 2. CO (2–1) channel maps of the IRAS 20343+4129 region, averaged over 2.11 km s−1 wide velocity intervals. The central velocity of each
channel is indicated in the upper left corner, and the systemic velocity is 11.5 km s−1. The crosses indicate the position of IRS 1 (north) and IRS 3
(south). The synthesized beam, shown in the lower right corner, is 3.′′5 × 2.′′7, at PA = −37.◦8. Contours are −6, −3, 3, 6, 9, 15, 30, and 40 times
the rms noise, 0.4 Jy beam−1. The lower right panel is the spectrum of the CO (2–1) emission toward the position of IRS 1. The conversion factor
is 2.46 K (Jy/beam)−1 (in the Rayleigh-Jeans assumption).

to constrain whether such velocities are due to gravitationally
bound motions. We find weak high-velocity gas at ∼12 km s−1

offset from the systemic velocity at position offsets up to 8′′,
or 10 000 AU. Such velocities at these distances would imply
an extremely high central mass of ∼1000 M� for the motions
to be gravitationally bound. Hence the bipolar structure seen in
CO (2–1) toward IRS 1 is most likely tracing an outflow motion.

Additionally, we computed the p-v plot toward IRS 1 in the
north-south direction (Fig. 4c). The only clear CO feature along
the direction of the cut is the clump at the offset position zero,
and does not seem related to any other CO feature to the south
of IRS 1, although one would expect a north-south bipolar struc-
ture judging from the single-dish CO map from Beuther et al.
(2002b). The CO emission at position zero arises from IRS 1,
with the high-velocity component coming from outflow motions
(see above). Note that observing outflow emission in both the
east-west (Fig. 4b) and north-south (Fig. 4c) directions could be
indicating that the IRS 1 outflow is a wide-angle outflow (this
could be also an effect of not resolving the base of the out-
flow, but the high-velocity emission of Fig. 4c, specially in the
blueshifted lobe, is partially resolved). Finally, the decrease in
CO emission at around the systemic velocity near the zero off-
set position, also seen in the CO spectrum of Fig. 2, may be
produced by a combination of the missing short spacings and

opacity effects. Given that the brightness temperature at the line
peak is around 20 K, similar to the kinetic temperature, the line is
optically thick at systemic velocities. The CO emission at these
velocities is probably self-absorbed by foreground quiescent ma-
terial of the cloud in which the YSOs are embedded.

We calculated the energetics of the outflow associated with
IRS 1 for each lobe separately, and listed the values in Table 2.
The expression used for calculating the outflow CO column den-
sity N(CO) from the transition J → J−1 (derived from Eq. (A1)
of Scoville et al. 1986) is:

[
N(CO)
cm−2

]
= 4.33 × 1013 Tex

J2
exp

(
2.77J(J + 1)

Tex

)
τ0

1 − e−τ0

⎡⎢⎢⎢⎢⎢⎣
∫

TB(v)dv

K km s−1

⎤⎥⎥⎥⎥⎥⎦ ,

where Tex is the excitation temperature, τ0 is the optical depth,
and TB(v) is the brightness temperature profile.

For the mass derived from CO, we adopted a mean molecular
weight per H2 molecule of 2.8, and a CO abundance X(CO) =
10−4 (Scoville et al. 1986):
[

M
M�

]
= 2.25 × 10−16

[
A

pc2

] [
N(CO)
cm−2

]
,

with A being the area of the line emission.
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Fig. 3. Thick contours: zero-order moment map for the low-velocity
CO (2–1) emission. Velocities have been integrated from 8.4 to
14.8 km s−1. Contours range from 8 to 56 Jy beam−1 km s−1, increasing
in steps of 8 Jy beam−1 km s−1. Thin contours: zero-order moment of
the blueshifted CO (2–1) emission observed in single-dish by Beuther
et al. (2002b). Contours are 5.2, 6.3, 7.4, 8.5, and 9.6 Jy beam−1 km s−1.
Grey scale: H2 emission (continuum plus line) at 2.12 µm from Kumar
et al. (2002). Note that the SMA low-velocity structures on either side
of IRS 3 are associated with H2 extended emission. The crosses corre-
spond to infrared sources from the 2MASS Point Source Catalog (PSC).

We assumed optically thin emission in the line wing, and an
excitation temperature of ∼25 K, estimated from the spectrum in
Fig. 2. Due to the lack of observations of other CO transitions,
we could not make a better estimate of Tex. However, this effect
is small, as varying Tex between 15 and 30 K yields to a varia-
tion in the outflow parameters of only ∼7%. For the red lobe we
integrated from 15 to 33 km s−1, and for the blue lobe from −6
to 8 km s−1. The age or dynamical timescale tdyn was derived by
dividing the size of each lobe (from the first contour shown in
Fig. 4a) by the maximum velocity reached in the outflow with
respect to the systemic velocity (21.5 km s−1 for the red lobe,
and 17.5 km s−1 for the blue lobe). We did not correct for the
inclination angle, since this parameter is not well known. To ap-
ply this correction, the velocity must be divided by sin i, and the
linear size of the lobes must be divided by cos i, with i being the
inclination angle with respect to the plane of the sky.

3.3. Infrared emission from 2MASS

We extracted a sample of infrared sources within the SMA pri-
mary beam toward IRAS 20343+4129 from the 2MASS Point
Source Catalog (PSC, Skrutskie et al. 2006), with the aim of
finding the possible infrared sources associated with the cloud
of gas and dust studied in this work, and plotted their (J − H),
(H−K) diagram (Fig. 5a). In the diagram, there are three sources
with low values of the color indices, including IRS 3. These are
unreddened (or only slightly reddened) stars. We measured the
infrared excess as the difference between the (H − K) color and
the (H − K) color correspoding to a reddened main-sequence
star. There is a group of five sources, listed in Table 3, for which
the infrared excess is larger than 1. We assume that such a large

infrared excess (typically, infrared excesses for Class II sources
are smaller than 0.4; Meyer et al. 1997) is indicative of the YSOs
being associated with the IRAS 20343+4129 star-forming re-
gion. Out of these five sources, we detected dust continuum
emission only toward IRS 1 and possibly IRS 1N.

In order to estimate the spectral type of the infrared sources,
we plotted them in a J, (J − H) diagram (Fig. 5b). In this dia-
gram, if we deredden IRS 3 along the extinction vector, it falls
at the position of B2 stars, consistent with the spectral type
derived from its centimeter continuum emission (see Sect. 4.2
and Miralles et al. 1994). Assuming that IRS 3 is a B2 main-
sequence star, we derived the amount of visual extinction toward
IRS 3, AV = 13.3 mag. Regarding IRS 4, IRS 5 and IRS 6, they
all have spectral types around K0 or later.

In the (J−H), (H−K) diagram of Fig. 5a, when dereddening
IRS 1 and IRS 1N by AV = 13.3 mag (the visual extinction
toward IRS 3), we found that IRS 1 remains inside the loci of
luminous Class I and Herbig Ae/Be stars (Lada & Adams 1992;
Lee et al. 2005), while IRS 1N, after dereddening, has colors
similar to YSOs of low luminosity.

4. Discussion

4.1. The young high-velocity bipolar outflow toward IRS 1

Small scale outflow found toward IRS 1: The parameters of
the IRS 1 outflow are similar to the mean values of low-mass
outflows (Wu et al. 2004), and are about 2 orders of magnitude
smaller than the parameters derived from surveys of high-mass
outflows (Beuther et al. 2002b; Wu et al. 2005; Zhang et al. 2005;
Xu et al. 2006). However, given that the surveys of high-mass
molecular outflows are based on single-dish observations, pick-
ing up large-scale structure and considering thus larger areas of
outflow emission, we compared the parameters of the IRS 1 out-
flow with other high-mass outflows observed with interferome-
ters, listed in Table 4. From the table we found that the IRS 1
outflow is about 2–3 orders of magnitude less energetic than the
outflows of high-mass protostars observed with high angular res-
olution. In some cases, the outflow parameters were corrected
for opacity and inclination, but these effects may contribute only
about 1 order of magnitude. From this comparison it seems that
IRS 1 must be a low/intermediate-mass YSO.

We additionally considered the centimeter continuum lumi-
nosity produced by shock ionization that should be observed
for the IRS 1 outflow. From the correlation between the cen-
timeter luminosity and the outflow momentum rate found by
Anglada (1995) for a sample of low/intermediate-mass YSOs,
the IRS 1 outflow can account for a centimeter luminosity
of ∼0.6 mJy kpc2, assuming that all of the stellar wind is
shocked. This centimeter luminosity is undetectable with the
sensitivity of the observations of Sridharan et al. (2002, shown in
Fig. 1), which is on the order of 0.4 mJy kpc2. Then, the momen-
tum rate derived for the outflow of IRS 1 is not able to produce
a detectable amount of centimeter continuum emission, which is
consistent with our observations.

Finally, the image of the H2 line at 2.12 µm (1–0 S(1)) re-
veals strong emission very close to IRS 1 (Kumar et al. 2002),
being elongated in the east-west direction, and thus coincident
with the direction of the outflow of IRS 1. This would sug-
gest that the H2 emission at 2.12 µm close to IRS 1 arises from
shocks in the outflow. However, Comerón et al. (2002) detected
line emission at 2.225 µm, which could be due to the 1−0 S(0)
line of H2. This H2 line at 2.225 µm has been found toward
Class I and flat-spectrum sources (e.g., Doppmann et al. 2005),
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Fig. 4. a) CO (2–1) high-velocity emission toward IRAS 20343+4129. Light grey contours, corresponding to the redshifted emission in a velocity
range from 14.7 to 32.8 km s−1, range from 2 to 38 Jy beam−1 km s−1, increasing in steps of 6 Jy beam−1 km s−1. Black contours, corresponding
to the blueshifted emission in a velocity range from −6.4 to 8.5 km s−1, are the same as light grey contours. Crosses mark the positions of IRS 1
(north) and IRS 3 (south). b) Position-velocity (p-v) plot along the east-west direction centered on IRS 1. Contours are −5, −2, 2, 5, 10, 20, 30,
40, and 45 times 0.4 Jy beam−1. c) The same as in b) along the north-south direction.

Table 2. Physical parametersa of the outflow driven by IRS1.

Age N12 Mass Ṁ P Ṗ Ekin Lmech

Lobe (yr) (cm−2) (M�) (M� yr−1) (M� km s−1) (M� km s−1 yr−1) (erg) (L�)

Red 3100 2.7 × 1016 0.028 9.0 × 10−6 0.50 1.6 × 10−4 9.0 × 1043 0.20
Blue 3800 2.6 × 1016 0.027 7.2 × 10−6 0.38 1.0 × 10−4 5.3 × 1043 0.09

a The parameters were obtained as follows. Age: tdyn (see main text); mass-loss rate: Ṁ = M/tdyn; momentum: P = MVrange (Vrange is the range
for which we integrated the emission for each lobe, see main text); momentum rate (or mechanical force): Ṗ = P/tdyn; energy of the outflow:
E = 1/2 M V2

range; mechanical luminosity: Lmech = E/tdyn.

associated with outflows (Everett et al. 1995; Davis & Smith
1999; Caratti o Garatti et al. 2006), and with photon-dissociated
regions (Ramsay et al. 1993; Luhman et al. 1998), but usually the
H2 line at 2.225 µm is much fainter than the H2 line at 2.12 µm,
while this is clearly not the case for IRS 1 (see Fig. 7 of Comerón
et al. 2002). Ratios of different intensities of H2 lines are used to
discriminate between shock-excited H2 emission and excitation
by fluorescence. A detailed analysis of the ratios of high spectral
resolution observations of different H2 lines would allow us to
study the mechanism of the H2 excitation, but this is out of the
scope of this paper.

Large-scale CO emission: Single-dish observations of
CO (2−1) toward IRAS 20343+4129 show a blue lobe centered
around IRS 3, and a red single-peaked lobe around IRS 1
(Beuther et al. 2002b). H2 emission in a fan-shaped structure is
found to be associated with the blue CO large-scale lobe (see

Fig. 3). This seems to suggest the existence of an outflow in the
north-south direction. However, from the SMA data we found
no evidence of such a north-south outflow (see Fig. 4a, c).

We compared the SMA CO (2–1) channel maps with the
single-dish CO (2–1) channel maps of H. Beuther. The blue lobe
observed with the single-dish data results from integrating only
from 8 to 9 km s−1, an interval very close to the systemic ve-
locity. In the SMA channel maps from Fig. 2, we only de-
tected emission at the position of the blue single-dish lobe for
velocities between 8.4 and 14.8 km s−1. Considering that the
large-scale blue lobe arises from extended emission of ∼25′′
in size, we found that this emission could not have been de-
tected by the SMA. Given the shortest baseline of an interfer-
ometer, and the size of the observed emission, one can estimate
the fraction of correlated flux detected by the interferometer. For
a source of 25′′, this corresponds to a 0.2% for our SMA con-
figuration (with a shortest baseline of 11 kλ). Thus, out of the
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Table 3. 2MASS sources within the SMA primary beam with infrared excess >1.

Identification Position infrared
Source 2MASSJ+ α(J2000) δ(J2000) J H Ka excessb

IRS1 20360753+4140090 20:36:07.53 +41:40:09.1 15.28 12.02 8.90 1.17
IRS1N 20360769+4140121 20:36:07.69 +41:40:12.2 15.18 13.82 9.40 3.61
IRS3c 20360725+4139528 20:36:07.25 +41:39:52.8 12.37 11.06 10.13 0.15
IRS4 20360656+4140167 20:36:06.57 +41:40:16.7 16.56 15.82 14.17 1.21
IRS5 20360762+4140024 20:36:07.63 +41:40:02.5 15.43 15.12 11.79 3.15
IRS6 20360769+4139460 20:36:07.69 +41:39:46.1 15.05 15.17 13.94 1.31

a The filter is Ks, but we write K for simplicity.
b The infrared excess is measured as the difference between the measured (H − K) color and the (H − K) color correspoding to a reddened main-
sequence star (Allen 1976, and extinction law of Rieke & Lebofsky 1985).
c Although IRS 3 does not have an infrared excess larger than 1, we include this source in the table due to its relevance in the paper.

Table 4. Physical parameters of the IRS1 outflow compared with other low, intermediate, and high-mass outflows observed with interferometers.

Lbol Age Mass Ṁ P Ṗ Ekin Lmech

Region (L�) (yr) (M�) (M� yr−1) (M� km s−1) (M� km s−1 yr−1) (erg) (L�) Ref.

HH 211 3.6 1400 0.0024 1.7 × 10−6 0.040 2.8 × 10−5 6.9 × 1042 0.027 1
I21391 440 − 0.14 − 3.6 1.4 × 10−3 1.2 × 1045 − 2

I20343-IRS1 3200 3400 0.055 1.6 × 10−5 0.88 2.6 × 10−4 1.4 × 1044 0.29 3

I20293-A 6300 4300 2.0 4.5 × 10−4 90 2.1 × 10−2 4.1 × 1046 79 4
I18182 20 000 − 7.3 − 71 − 8 × 1045 − 5
ON2 N − 37 000 58 − 1060 2.8 × 10−3 2.0 × 1047 45 6

References: 1: Palau et al. (2006); 2: Beltrán et al. (2002); 3: this work; 4: Beuther et al. (2004a); 5: Beuther et al. (2006); 6: Shepherd et al. (1997).

total CO (2−1) flux observed in single-dish for the blue lobe,
1310 Jy km s−1, the SMA could pick up only 2.6 Jy km s−1,
which should be detected at a few times the rms of the SMA
channel maps, as is the case (see channel at 9.5 km s−1 of Fig. 2).
We concluded that almost all of the large-scale blueshifted lobe
seen in single-dish has been resolved out by the SMA. Note that
in the single-dish images of Beuther et al. (2002b) there is a blue
contour at the position of IRS 1, suggesting that if blueshifted
emission had been integrated for velocities <8 km s−1, the blue

lobe of the IRS 1 outflow detected with the SMA would appear
in the single-dish observations as well.

Regarding the single-dish red lobe, this was obtained in-
tegrating from 13 to 15 km s−1 (Beuther et al. 2002b). We
estimated the contribution of the SMA redshifted emission to
the single-dish redshifted emission. The SMA integrated in-
tensity of the red lobe for the same range of velocities as
Beuther et al. (2002b) is 160 Jy km s−1, obtained from the spec-
trum toward IRS 1, and assuming a size of the lobe of ∼10′′.
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Beuther et al. (2002b) obtain a flux density of 1300 Jy km s−1,
implying that the SMA redshifted emission can account for
about 12% of the redshifted emission detected with the single-
dish data, a contribution about 2 orders of magnitude higher than
that for the blueshifted large-scale lobe. This suggests that the
blue and red lobes seen in the single-dish data, come from mate-
rial at different spatial scales.

4.2. Is IRS 3 driving a cavity around it?

As seen above, the CO (2–1) emission from the single-dish data
(Beuther et al. 2002b) shows a slightly blueshifted large-scale
lobe that corresponds well with the fan-shaped structure seen in
H2 emission around IRS 3 (see Fig. 3). In addition, from the
SMA data of this work, we found low-velocity CO elongated
structures on either side of IRS 3, as well as dust condensations
also on either side of IRS 3. All these observational features
seem to suggest that IRS 3 is interacting with the surrounding
medium and producing a shell of circumstellar gas expanding
away from IRS 3. We search for any kinematical evidence of
such an expanding cavity in the low-velocity CO emission, but
the strong missing flux, and the presence of at least one bipo-
lar outflow and other YSOs surrounding IRS 3, make this search
difficult. However, a preliminary study of the NH3 emission in
the region revealed dense gas surrounding IRS 3 whose kine-
matics were consistent with an expanding shell with IRS 3 in
its center (Palau et al., in prep.). In the following, we consider
whether IRS 3 is able to drive such a cavity.

Given that the centimeter continuum emission associated
with IRS 3 (of 1.8 mJy, Sridharan et al. 2002) is consistent with
an ionizing B2 star (Panagia 1973), and that the luminosity-to-
mass ratio of typical B2 stars is high enough to allow the star to
push away the surrounding material by radiation pressure (given
typical dust opacities of molecular clouds, Calvet et al. 1991;
Anglada et al. 1995), the first interpretation to explore is that the
cavity is driven by the radiation pressure from IRS 3. This leads
to a scenario in which IRS 1 is a low/intermediate-mass YSO
accounting for a small fraction of the total bolometric luminos-
ity of IRAS, while IRS 3 is a high-mass star accounting for most
of the bolometric luminosity. However, the cavity could also be
driven by a stellar wind from IRS 3. We studied the scenario of
a wind-driven cavity by following the model of Anglada et al.
(1995). In this model, the centimeter continuum emission is as-
sumed to trace an ionized stellar wind. We adopted a spectral
index for the wind of 0.6, and estimated a mass loss rate of the
ionized material following Beltrán et al. (2001). By noting from
the observations the radius of the cavity (∼10′′), the velocity of
its walls (∼2 km s−1), and the external pressure of the ambient
cloud (∼3.3 km s−1, from the line width of the CO (2–1) line in
the walls of the cavity), we obtained a maximum radius, den-
sity, and dynamical timescale of the cavity of 12′′, 2300 cm−3,
and 11 000 yr, respectively, which are reasonable values for the
region. This leads to a scenario in which IRS 3 is not necessar-
ily the most massive source of the region, and then IRS 1 could
account for most of the IRAS luminosity.

Thus, in the interpretation of the centimeter continuum emis-
sion as either an UCH ii region, or an ionized stellar wind, IRS 3
can create a cavity of swept up material around it. In order to
distinguish between these two scenarios, it would be very use-
ful to consider the spectral energy distribution in the centimeter
range for IRS 3. In addition to the 3.6 cm measurement from
Sridharan et al. (2002), shown in this work, there are other ob-
servations at 6, 3.6, and 2 cm, listed in Table 5. The only simul-
taneous measurements are those at 6 and 2 cm, which result in a

Table 5. Summary of the centimeter observations carried out toward
IRAS 20343+4129.

λ S ν Observing θFWHM

(cm) (mJy) year (′′) Refs.

6 1.1 ± 0.2 1989 5′′ Miralles et al. (1994)
3.6 1.3 ± 0.3 1994 8′′ Carral et al. (1999)

1.8 ± 0.1 1998 1′′ Sridharan et al. (2002)
2 <1.0a 1989 5′′ Miralles et al. (1994)

0.7 <9a 2003 1.′′5 Menten et al., in prep.
a Upper limits at the 3σ level.

spectral index≤−0.1, consistent with an optically thin UCH ii re-
gion. However, the other observations at 3.6 cm are not consis-
tent with this flat spectral index. With the measurements at 3.6
and 6 cm, the spectral index ranges from 0.3 to 0.9 (depending
on the epoch of the observations at 3.6 cm). This spectral index
is consistent with emission from an ionized wind (e.g., Panagia
& Felli 1975). Thus, from the current data it is not clear whether
the source is variable with time, and what is the value of the
spectral index of the centimeter source associated with IRS 3.
New observations at 6, 3.6, 2, and 1.3 cm toward IRS 3 would
give insight into which mechanism, a stellar wind or radiation
pressure, is driving the cavity.

4.3. On the nature of IRS 1

From an analysis of JHK color−magnitude diagrams including
the high-mass stars of the Cygnus OB2 association, Comerón
et al. (2002) propose that IRS 1 may be one of the most lumi-
nous and embedded objects in the entire association. In the K,
(H − K) diagram, IRS 1 is the reddest object of the association,
and dereddening along the extinction vector yields a very bright
K magnitude compared with the other massive stars. However,
this plot sets an upper limit to the intrinsic brightness because
in the K band there may be some contribution from circumstel-
lar material. For this reason, Comerón et al. (2002) use the H,
(J−H) diagram, which is not seriously affected by circumstellar
emission, and find again that IRS 1 is among the brightest. Since
the color–magnitude diagrams were made by using the Second
Incremental Release of the 2MASS PSC, and this release is by
now obsolete, we redid the diagrams with magnitudes from the
current release of 2MASS PSC, and found the same values ex-
cept for the J magnitude, yielding (J−H) = 3.26 instead of 4.23
used by Comerón et al. (2002). Thus, dereddening along the ex-
tinction vector in the H, (J − H) diagram does not set IRS 1
among the brightest members of the association, but yields that
IRS 1 must be still intrinsically brighter than stars with spectral
type B0, for which typical luminosities are around 25 000 L�
(Panagia 1973), at least one order of magnitude higher than the
bolometric luminosity of IRAS 20343+4129.

If IRS 1 were a high-mass ZAMS star, one would ex-
pect to detect centimeter continuum emission from ionized
gas, and to detect the star at optical wavelengths. However,
no centimeter continuum emission was detected above the
3σ level of 0.6 mJy beam−1, and IRS 1 does not appear in
the POSSII plates. If IRS 1 were a high-mass protostar, deeply
embedded and still accreting most of its mass, one would ex-
pect to observe a massive envelope, with a mass of the order
of the accreted mass, surrounding the protostar. But we did
not detect a massive envelope toward IRS 1 from the millime-
ter continuum emission (the circumstellar mass was ∼0.8 M�,
Sect. 3.1), and the outflow parameters were comparable to those
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of low/intermediate-mass protostars (Sect. 4.1). Thus, a high-
mass nature for IRS 1 is not consistent with our observations.
All this suggests that IRS 1 cannot be considered a reddened
stellar photosphere but a YSO with a cold envelope, and that the
estimation of its brightness from the magnitude-color diagrams
gives only an upper limit. Note however that the JHK magni-
tudes of IRS 1 cannot be accounted for by a low-mass YSO at
the distance of the region.

At this point we consider whether the continuum emission
is really tracing all the dust surrounding IRS 1. We considered
four different possibilities. First, the SMA could be filtering out
large-scale emission; we considered this option and we ruled
it out because the largest angular scale (FWHM) to which the
SMA is sensitive is ∼8′′, larger than ∼4′′, the observed size of
the millimeter source associated with IRS 1 (MM6). In addition,
the CO emission observed with the SMA toward IRS 1 shows
that the SMA is really sensitive to scales larger than the size of
the dust condensation associated with IRS 1, and that the dust
emission is significantly more compact than the CO emission.
Second, the dust could be optically thick; however, this possibil-
ity yields an unrealistically low value for the dust temperature,
given the flux density at 1.3 mm and the deconvolved size for
MM6 of 3′′. Third, the dust could be sublimated; since dust sub-
limates at ∼1500 K (Whitney et al. 2004), a considerable amount
of gas at such a high temperature should be detected at opti-
cal wavelengths. Fourth, CO emission has been detected with
no continuum emission for a few YSOs; however, these objects
are evolved (Class II/III) low-mass systems (e.g., Andrews &
Williams 2005; Takeuchi & Lin 2005). Thus, none of these pos-
sibilities is convincing for the case of IRS 1, hinting that the
mass traced by the millimeter continuum emission is most likely
all the circumstellar mass associated with IRS 1.

Therefore, the current data suggest that IRS 1 is a
low/intermediate-mass YSO. In order to further constrain the
mass and the evolutionary stage of IRS 1, we plotted the spec-
tral energy distribution (SED) compiled from 2MASS (corrected
for interstellar extinction, see Sect. 3.3), MSX, IRAS, observa-
tions in the submillimeter range carried out with SCUBA on
the JCMT (Williams et al. 2004), and the SMA (this work). As
the IRAS flux densities may have contribution from both IRS 1
and IRS 3, they are only upper limits. The fluxes measured by
SCUBA are also upper limits because the single dish is picking
up large-scale emission, partially arising from IRS 3 and from
the dust condensations on either side of IRS 3. The angular reso-
lution of the MSX images allowed us to estimate the flux density
from IRS 1 by integrating the mid-infrared emission in an aper-
ture of ∼15′′ of diameter around IRS 1.

The resulting SED (Fig. 6) shows a steep profile for the
2MASS wavelengths, suggesting that any contribution from a
hot photosphere is negligible. Rather, the peak of the SED ly-
ing between 10 and 100 µm indicates that most likely a cold
envelope dominates the SED, with d(logλFλ)/d(logλ) > 0 be-
tween 2 and 100 µm, consistent with the classification of IRS 1
as a Class I source (e.g., Hartmann 1998). Note that if IRS 1 were
a Class 0 source, the SED should not show significant emission
in the near infrared (André et al. 1993; Lada 1999). We com-
pared the IRS 1 SED with SEDs of Class I sources of bolo-
metric luminosities between 4 and 960 L� from the literature,
scaled to the distance of IRAS 20343+4129. From this com-
parison, we found that IRS 1 is likely not a low-mass source,
but rather its SED resembles that of intermediate-mass sources
with bolometric luminosities around 1000 L� (the exact value
of the luminosity of IRS 1 cannot be determined because the
IRAS flux densities are only upper limits, and could be the main
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Fig. 6. Spectral Energy Distribution (SED) for IRS 1. Black dots cor-
respond to IRS 1, and thin curves are SEDs from the literature for
Class I sources of 960 L� (dotted, VMR-D-IRS 13: Massi et al. 1999),
250 L� (solid, VMR-D-IRS 14: Massi et al. 1999), and 4 L� (dashed,
IRAS 04016+2610: Eisner et al. 2005), which have been scaled to the
distance of IRAS 20343+4129. IRAS and SCUBA fluxes are upper lim-
its because it is not possible to disentangle the contribution of IRS 1
from the surrounding sources. For comparison, open triangles corre-
spond to IRS 3 2MASS fluxes. 2MASS fluxes have been corrected for
interstellar extinction (see Sect. 3.3).

contribution to the bolometric luminosity). From the evolution-
ary tracks of Palla & Stahler (1993) for intermediate-mass stars,
and assuming that IRS 1 is already in the birthline, one would ex-
pect a stellar mass for IRS 1 of around 5 M�. This is a factor of
6 higher than the circumstellar mass derived from the SMA data,
∼0.8 M� (Sect. 3.1). In the low-mass regime, Class 0 sources
are expected to have circumstellar/envelope masses similar to
the stellar masses, and thus one could argue that 0.8 M� is too
low for an intermediate-mass YSO of 1000 L�. However, one
expects that in the Class I stage, the ratio of the circumstellar-
to-stellar mass progressively decreases. Taking into account that
intermediate-mass sources evolve faster to the main-sequence
than the low-mass sources, it may be reasonable to have a cir-
cumstellar mass lower than its stellar mass. In addition, there are
some cases in which the mass of the dust/gas condensation as-
sociated with intermediate-mass YSOs is significantly lower (at
least by 1 order of magnitude) than the estimated stellar mass
(Beuther et al. 2004b; Martín-Pintado et al. 2005; Zapata et al.
2006). Thus, a circumstellar mass of ∼0.8 M� for IRS 1 seems
to be compatible with its classification as a Class I source of
around 1000 L�.

4.4. Sources in different evolutionary stages: millimeter
vs. near-infrared emission

In order to gain insight into the star formation process in the
region, we tentatively classified the different sources identified
in this work in three different evolutionary stages, depending on
their millimeter and infrared emission.

Sources at the end of the accretion phase: We classified in
this evolutionary stage IRS 3 to IRS 6 (Table 3), the sources
detected only in the infrared. From the centimeter and infrared
emission, IRS 3 seems to be a B2 star. As for IRS 4 to IRS 6, they
all have spectral types around K0 or later (as shown in Fig. 5b),
and thus are low-mass YSOs. Since we did not detect emission
toward these sources at 1.3 mm, we estimated an upper limit for
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their associated mass of ∼0.2 M� (with the same assumptions as
Sect. 3.1). These YSOs are possibly Class II/III sources.

Sources in the main accretion phase: We included in this
group the sources showing both infrared and millimeter emis-
sion, as is the case of IRS 1. In Sects. 3.3 and 4.3 we con-
cluded that IRS 1 seems to be an intermediate-mass Class I
source. Another source that could be in the main accretion phase
is IRS 1N, if we assume that it is associated with MM5 (see
Sect. 3.1). For this source we estimated a spectral type A0 or
later, from the magnitude-color diagram of Fig. 5b, and an asso-
ciated mass of ∼0.9 M�, from the SMA data. Thus, if IRS 1N is
an embedded YSO, it is a low-mass object. However, IRS 1N is
the source with the highest H−K color in the region (see Fig. 5a),
and a possibility for such a high H − K color is that the K-band
is contaminated by the H2 line at 2.12 µm, as the continuum-
subtracted H2 images from Kumar et al. (2002) suggest. Thus,
it remains unclear from the available data whether IRS 1N is a
low-mass embedded YSO, or an infrared source whose emission
mainly arises in the interaction of an outflow (either the IRS 1
outflow, or an outflow from IRS 1N/MM5 itself) with the sur-
rounding medium.

Starless core candidates: The sources MM1 to MM4 and
MM7 (Table 1) have been detected only in the millimeter, and
lie in a region completely dark in the near infrared (Fig. 1). The
masses of these dust condensations are 0.7−1.2 M�, and thus
they are low-mass condensations. Sources bright only in the mil-
limeter could also be tracing Class 0 protostars being at the be-
ginning/main accretion phase. However, given that we did not
find any sign of star formation such as outflow emission, we
suggest that some, if not all, of these sources could be starless
core candidates.

Therefore, the IRAS 20343+4129 region harbors sources
that seem to be in different evolutionary stages, and with stellar
masses ranging from <0.2 to 8−10 M�. The intermediate/high-
mass sources of the region, IRS 1 and IRS 3, are in different
evolutionary stages. IRS 3 is visible at optical wavelengths, does
not show infrared excess, and has no CO (2–1) nor dust emis-
sion associated, suggesting that it has already finished the main
accretion phase. On the contrary, IRS 1 is not detected in the
optical, has strong infrared excess and dust emission associated,
and is the driving source of a bipolar outflow, which indicates
that IRS 1 is still accreting a significant amount of mass, with
IRS 1 therefore younger than IRS 3. However, even with dif-
ferent evolutionary stages, IRS 1 and IRS 3 could have formed
simultaneously, since the uncertainty in their masses is impor-
tant, and the contraction time to the main-sequence (since the
formation of a first hydrostatic core until the hydrogen burn-
ing stage), which deacreases with the mass of the YSO, in the
intermediate/high-mass regime gets comparable or shorter than
the free-fall timescale, and thus an intermediate-mass Class I
YSO may have formed simultaneously with a high-mass ob-
ject already in the main-sequence phase. For example, using the
computations of Bernasconi & Maeder (1996), and assuming
that IRS 3 is around 9 M� and IRS 1 is around 5 M�, IRS 3
has a contraction time of ∼0.3 Myr, and IRS 1 of ∼1 Myr. This
is different from the low-mass regime, where YSOs evolve to the
main-sequence in a timescale >10 Myr (e.g., Hayashi 1961; Iben
1965), which is always much larger than the free-fall timescale
(∼0.5 Myr). Thus, a low-mass YSO in the pre-main-sequence
phase (Class II/III) and a low-mass YSO in the main accretion
phase (Class 0/I) cannot have formed simultaneously. As seen

Fig. 7. Grey scale: H2 emission (continuum plus line) at 2.12 µm in the
IRAS 20343+4129 region (Kumar et al. 2002). White contours corre-
spond to the 3.6 cm emission from Carral et al. (1999), and are 0.66,
0.99, 1.14, 1.33, 1.52, and 1.71 mJy beam−1. Black contours are the
1.2 mm continuum emission observed in single dish by Beuther et al.
(2002a), and trace the dust cloud where IRS 1 and IRS 3 are forming.
Contours are: 25, 50, 100, 200, and 300 mJy beam−1. Note that the cen-
timeter emission traces the ionized southwestern border of the cloud, as
well as IRS 3 in the center of the cloud. Crosses indicate the spatial dis-
tribution of the 2MASS sources in the region with infrared excess larger
than zero: (0−0.4) for the yellow color (Class II sources); (0.4−1) for the
orange color (Class I), and >1 for the red color, following Matsuyanagi
et al. (2006). Note that most of the 2MASS sources with infrared ex-
cess >1 lie in the center of the cloud, near IRS 3 and IRS 1.

in this section, we find low-mass YSOs in the very first phases
of formation, and others that seem to be Class II/III candidates,
and thus they cannot be coeval. Therefore, the star formation in
IRAS 20343+4129 seems to be a continuous process. It is worth
noting that the intermediate/high-mass star IRS 3 is in an evolu-
tionary stage equal or more evolved than the low-mass sources.
This is in contrast to previous claims that intermediate/high-
mass stars in clusters appear less evolved than the low-mass stars
in the cluster (Massi et al. 2000; Kumar et al. 2006).

Finally, the spatial distribution of the sources found in
IRAS 20343+4129 shows that star formation in this region is
localized, that is, to the north and south of IRS 3 there are YSOs
that are already bright in the infrared, while to the east and to the
west there are millimeter sources that seem to be starless cores.
Since IRS 3 and IRS 1 could be coeval, we suggest that these
two sources are reflecting the initial conditions of high density
in the parental cloud. As for the low-mass dust condensations on
either side of IRS 3, we propose that they may be compressed by
the expanding cavity driven by IRS 3, and thus could eventually
form a new generation of stars.

4.5. IRAS 20343+4129 within Cygnus OB2

The H2 emission at 2.12 µm shows a cometary arch about 1′
to the southwest of IRS 3, which is also detected in centime-
ter emission (see Fig. 7; Kumar et al. 2002; Carral et al. 1999).
This cometary arch follows the border of a dust cloud traced
by 1.2 mm emission observed in single-dish by Beuther et al.
(2002a), and could be produced by the ionization front from
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a nearby OB star. In fact, the arch is facing the center of the
Cygnus OB2 association. This would be similar to the bright-
rimmed clouds facing HII regions, such as IC 1396N (Sugitani
et al. 1991; Beltrán et al. 2002), which is ionized by an O6.5 star
at 13 pc of distance (Schwartz et al. 1991). We plotted the
OB stars of the association (Reed 20033), and found that there
are five O6–O9 stars about 25′ (9 pc at the adopted distance
for IRAS 20343+4129) to the south-west of the arch. Given
the flux density of the centimeter continuum emission tracing
the cometary arch, one can estimate the required flux of ion-
izing photons per unit area that must reach the cloud to pro-
duce the observed centimeter emission (Lefloch et al. 1997).
In our case, the flux density of the arch at 3.6 cm is around
5 mJy, and this requires a flux of ionizing photons per area
unit of 4 × 109 s−1 cm−2. The flux of ionizing photons for an
O6 star is tipically 1.20 × 1049 s−1 (Panagia 1973), and assum-
ing a distance to the arch of 9 pc, the flux of ionizing photons
per area unit reaching the cloud is 1.2 × 109 s−1 cm−2, close
to the value required to account for the flux of the centimeter
emission in the arch. Thus, the O6 star 25′ to the southwest of
the arch, BD+41 3807, is probably the star ionizing the border
of the IRAS 20343+4129 cloud. Finally, we calculated the in-
frared excess (as described in Sect. 3.3) of the 2MASS sources
within a diameter of 4′ centered on IRS 3 (thus including a re-
gion outside the rim), and plotted the sources with positive in-
frared excess in Fig. 7. In the figure, crosses with redder colors
correspond to sources with larger infrared excess (and thus pre-
sumably younger). As seen from the figure, most of the sources
with strongest infrared excess within the field are found inside
the cloud, thus constituting a region of recent star formation as
compared to its surroundings. In addition, the millimeter sources
detected in this work could be sites of future star formation, and
thus IRAS 20343+4129 is a region actively forming stars within
the Cygnus OB2 association.

5. Conclusions

We observed the dust continuum emission at 1.3 mm with the
SMA as well as the CO (2–1) emission toward the massive star-
forming region IRAS 20343+4129, in order to study the prop-
erties of the different protostars in the region and their interac-
tions with the surrounding medium. Two bright infrared sources,
IRS 1 in the north and IRS 3 in the south, lie inside the SMA pri-
mary beam, and IRS 3 is associated with centimeter continuum
emission. Our main conclusions can be summarized as follows:

1. The dust continuum emission reveals three main condensa-
tions, to the north (associated with IRS 1), to the east and
to the west of IRS 3, with the western condensation be-
ing the brightest one and consisting of different subconden-
sations, of ∼1 M� each. Toward the eastern condensation,
of ∼0.7 M�, the SMA has filtered out most of the emis-
sion. The estimated mass of the condensation associated with
IRS 1 is ∼0.8 M�.

2. We discovered a bipolar high-velocity CO outflow, elongated
in the east-west direction, and identified IRS 1 as its driving
source. The millimeter continuum and CO emissions indi-
cate that IRS 1 is not a high-mass YSO, and the SED agrees
with IRS 1 being an intermediate-mass Class I source.

3. The low-velocity CO emission shows, in addition to emis-
sion toward IRS 1, two elongated structures on either side of

3 Catalog available at
http://othello.alma.edu/∼reed/OBfiles.doc

IRS 3, coincident with extended H2 emission at 2.12 µm. The
emission from the blueshifted lobe of the large-scale CO out-
flow seen in single-dish by Beuther et al. (2002b) has been
filtered out by the SMA, and the lobe does not have compact
emission. A scenario in which the blue large-scale CO lobe
traces a cavity blown up by IRS 3, and where the dust con-
densations on either side of IRS 3 are the result of the ac-
cumulation of mass in the walls of the expanding cavity, is
consistent with the observations. In this scenario, the elon-
gated low-velocity CO emission and the H2 extended emis-
sion trace the walls of the cavity. The expanding cavity could
be either driven by a stellar wind from IRS 3, or driven by
radiation if we assume that IRS 3 is a B2 star.

4. We found objects with very different properties and evolu-
tionary stages that have been born in the same parental cloud.
In addition, these objects are not randomly distributed in the
cloud, but their distribution seems to be determined, at least
partially, by the accumulation of mass at the walls of an ex-
panding cavity driven by IRS 3.
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