Sternentstehung - Star Formation
Winter term 2017/2018
Henrik Beuther & Thomas Henning

17.10 Today: Introduction & Overview (H.B.)
24.10 Physical processes I (H.B.)
31.10 no lecture - Reformationstag

0/.11 Physcial processes II (H.B.)
14.11 Molecular clouds as birth places of stars (H.L.)
21.11 Molecular clouds cont., virial & Jeans Analysis (H.B.)

05.12 Collapse models II (T.H.)
12.12 Protostellar evolution (T.H.)
19.12 Pre-main sequence evolution & outflows/jets  (T.H.)
09.01 Accretion disks I (T.H.)
16.01 Accretion disks II (T.H.)
23.01 High-mass star formation, clusters and the IMF (H.B.)
30.01 Planet formation (T.H.)
06.02 Examination week, no star formation lecture
Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws1718.html
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Last week

- Virial theorem and applications to cloud (in)stabilty

- Jeans analysis and applications to fragmentation

- Magnetic fields on clouds scales

- Turbulence
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Isothermal Sphere I

Three equations governing the equilibrium are:
Hydrostatic equilibrium

_lyp-va,=0
f

Ideal isothermal gas
P = pa;
where the ¢, obeys Poisson equation
V0, = 47Gp

Substituting equation 2 in 1 and after integration

Inp+ 0,/a" = const

In the spherical case, this is

p(r) = pce:cp(—'l'g/af)

P: Pressure

p: density

®,: grav. Potential
a,: sound speed




Isothermal Sphere II

With p. the density at the center and ®,(r =0) =0,
the Poisson eq. becomes

(1)
= 4rGp.exp(—B,/a”) (2)

Often, this equations is used in dimensionless form
with the dimensionless potential.

¢ = Dy/ o’
and the dimensionless length £
£ anGpe, Boundary conditions:
o’ ¢(0) =0

Then the Poisson eq. turns into the Lane-Emden eq. $'(0) =0
Gravitational potential and

2%} = exp(—¢) &) force are O at the center.

- Numerical integration: gravitational potential versus radius ... then density




Isothermal Sphere III

Nondimensional Radius &

- Density and pressure (P=pa?) drop monotonically away from the center.
- important to offset inward pull from gravity for grav. collapse.
- After numerical integration of the Lane-Emden equation
- density p/p.approaches asymtotically 2/&.
- Hence the dimensional density profile of the isothermal sphere is:
o(r) = a%/(2nGr2) ~ 1/r2,




Isothermal Sphere III
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- density p/p.approaches asymtotically 2/&.
- Hence the dimensional density profile of the isothermal sphere is:
o(r) = a%/(2nGr2) ~ 1/r2,




Isothermal Sphere IV

The dimensional mass 1s

dqr ./[']"" /)-7'2d'7' With:
(@ V" [ = V(¥ (4nGp))*s
imp. e tedg 2N o = p exp(-9)

irGp.) " .
\ pe) Subscript 0 at cloud edge
Using the Lane-Emden eq. and the boundary

condition ¢'(0) = 0

M = drp, [ T' ( ]

\47Gp,)

Defiming furthermore a dimensionless mass m

1/2 ~3/2;
R°G*M )
m = , with Py = ppa;
at |
{

the dimensionless mass equals

m = (4',7&\ —
po)

4" - y 1
Since & 18 known for each p./pg. and (5' {‘C) can be

read from the previous figure, one can evalue te m.




Isothermal Sphere IV

The dimensional mass 1s

4 [[° pridr (1) EiaE
(g ]3 o W = V(@%(4nGp))*e
= Ampe NS INCR = o exp(-0)

\4rGp.) "

Using the Lane-Emden eq. and the boundarv

Subscript 0 at cloud edge

condition ¢'(0) = 0 2.5 |
i m' 2d9)
— M =4m ! — 2.0 7
Pe\anGp,) dE), v,
Defining furthermore a dimensionless me "> | 7 |

~ R’cPum

1
a;

m

. 9
, with Py = ppa;

the dimensionless mass equals

- C—1/2 .
m = (4,7&] | ré’ld_o] % 1 2 3 4 5 6
oo \ £ ) Nondimensional Radius &

4" - y 1
Since & 18 known for each p./pg. and (5' {‘C) can be

read from the previous figure, one can ev: aluate m.




Isothermal Sphere V
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The beginning is for a radius £,=0, hence p/p,=1 and m=0.

For increasing p/po,, M (and @) then increases until p/p,=14.1,
corresponding to the dimensionless radius &,=6.5.




Gravitational stability

Gravity
dominated

Density Contrast log (p./po)

- Low density-contrast cloud: Increasing outer pressure P, - rise of m & p//py-
- With internal pressure P=pa,? and p~1/r?> decreasing outward - inner P rises
more strongly than P,and the cloud remains stable.

- Following the Boyle-Mariotte law for an ideal gas:
PV = const - P*4/3nr3 = const
the core actually shrinks with increasing outer pressure P,

- All clouds with p/py,> 14.1 (§,=6.5) are gravitationally unstable, the critical
mass is the Bonnor-Ebert mass (eq. 4, 2 slides ago, Ebert 1955, Bonnor 1956)
Mge = (m,a.*)/(P,/°G*2)




R e

Gravitational stability: _VT‘he case ”of B68

£,=6.9 is only
marginally about the
critical value 6.5

—> gravitational

stable or at the verge
of collapse
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Basic rotational configurations I

Adding a centrifugal potential ®_.,, the hydrodynamic equation reads
-1/p grad(P) - grad(cbg) - grad(Pce,) = 0

With @, defined as

D, = - | (j)/»?) do j: specific angular momentum
w: cylindrical radius
and j=wu with u the velocity around the rotation axis

Rotation flattens cores and may (?) be additional support against collapse.




Basic rotational configurations II

Isothermal sphere, =0
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Compared to previous Bonnor-Ebert models, these rotational models have

(in addition to the density contrast p/p,) the parameter 3 quantifying the

degree of rotation. § defined as ratio of rotational to gravitational energy:
B = Trot/W

B > 1/3 corresponds to breakup speed of the cloud. So 0 < < 1/3




Basic rotational configurations III

In realistic clouds, for flattening to appear,
the rotational energy has to be at least
10% of the gravitational energy. T,,/W
equals approximately f.

Examples:

T~ IQ2 = mr2Q?
(I: moment of inertia, Q: rotational velocity)
0 05 10 15 20 25 30 W =~ GmZ/r

Density Contrast log (p./p,)

> T o/ W = 1x107 (/(1km spct))? (r/(0.1pc))? (m/(10Mgy,))
Dense cores: > T,,/W ~ 103
GMCs: Velocity gradient of 0.05km/s representing solid body rotation, 200M,
and 2pc size imply also T, /W ~ 1073
- Cloud elongations do not arise from rotation, and centrifugal force
NOT sufficient for cloud stability!

Other stability factors are necessary --> Magnetic fields




Specific angular momentum

Specific angular momentum J/M (=Iw/M=Mr2w/M=r2w) must be reduced
from molecular cloud to star.

J/M(cm?/s)

Molecular clump

Binary (P~10%yr) 4x1020-10%1
Binary (P~10yr) 4x101°-1020
Binary (P~3d) 4x1018-101°
T Tauri star 10V

Sun 101>

- Specific angular momentum needs to be reduced by 6 orders of magnitude
from molecular cloud to T Tauri star scale.
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Magnetic fields I

The equation for magneto-hydrodynamic equilibrium now is:
-1/p grad(P) - grad(®,) -1/(pc) jx B =0

Solving the equations again numerically, one gets solutions with 3 free
parameters: the density contrast ratio p/p,,
the ratio o between magnetic to thermal pressure
a = By?/(8nP,)
and the dimensionless radius of the initial sphere e
&0 = (4nGpy/a)>* Ry _ magnetic field

10.0

£,=4.8, a=5.0
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A good fit to the numerical results is given by: m_; = 1.2 + 0.15 al/? g2



Magnetic fields II

Converting this to dimensional form (multiply by a.%/(P,/2G32)), the first term
equals the Bonnor-Ebert Mass (Mg = m,a/(P,/2G*?))

Mg = Mge + M

magn

with M., = 0.15 ol E%a/(P1/2G3/?)
= 0.15 2/sqrt(2n) (B,nR,%/GY/2) « B,

--> the magnetic mass M,,,q, is proportional to the B-field!
Qualitative difference between purely thermal clouds and magnetized clouds.
If one increases the outer pressure P, around a low-mass core of mass M, the

Bonnor-Ebert mass will decrease until Mgz < M, and then the cloud collapses.

However, in the magnetic case, if M < M., the cloud will always remain
stable because M., is constant as long a flux-freezing applies.




Ambipolar diffusion I

In less dense GMCs, the ionization degree is relatively large and ions and
neutrals are strongly collisionly coupled. Going to denser molecular cores,
the ionization degree decreases, and neutrals and ions can easier decouple.

Neutrals stream through the ions

accelerated by gravity.

- There is a drag force between ions and
neutrals from collisions.

- Furthermore, Lorentz force acts on ions.

The drift velocity between ions and neutrals is vy = Vv, - v,

And the drag force between ions and neutrals is: Fy,; = N, <0 Ve ™M Vyrite
(average number of collision per unit time n,<o;,V4.> times the transferred momentum m_ V)

The equation of motion with the Lorentz force is then:
n,: neutral density
- n.: number of ions
niI:drag =) X B/C = 1/(4I'I) (I‘Ot B) x B o;,: ion-neutral cross section

(with Ampere’s law: rot B = 4n/c * j) m,: mass of neutral
2 Vy4ir = (rot B) x B / (4nnn,m,, <o, Vg,iee™>)




Ambipolar diffusion II

For a dense core with a size L, the time-scale for ambipolar diffusion is:
taa = UlVaneel = (4nninym,, <oyvg>)L / (|(rot B) x BJ)
Approximating (rot B = B/L): |(rot B) x B| = B%/L we get

t.g = (4nnn.m, <G, V4> L2 / B

Hence ambipolar diffusion time-scale is proportional to ionization degree,
density and size of the cloud, and inversely proportional to magnetic field.

>t 4 = 3x10%yr (ny,/10%cm=3)¥2 (B/30uG)2 (L/0.1pc)?

It is still much under discussion whether this time-scale sets the rate where
star formation takes place or whether it is too slow and other processes
like turbulence are required.




Ambipolar diffusion caveat

Star Formation timescale: Observations indicate rapid star formation

on the order 1-2 million years. Ambipolar diffusion usually requires
longer cloud life-times.

- Maybe gravo-turbulent fragmentation necessary ...




Ambipolar diffusion caveat

31*13'30"

Star Formation timescale: Observations
on the order 1-2 million years. Ambipolga
longer cloud life-times.

- Maybe gravo-turbulent fragmentatio

31*13'30"

Girartfet al. 2006 "
e O L b

S 0.02

0.01

0.5



Magnetic reconnection

- Field lines of opposite direction are dragged together
- antiparallel B field lines annihilate and magnetic energy is
dissipated as heat.
- This process was first invoked to explain large luminosities observed
in solar flares.
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Static
Envelope

Infall Region

Infall signatures I

Ovals are loci of constz
line-of-sight for
v(r) o 0>

P

o Observer

static envelope

From Evans 1999

Rising T, along line of sight

Velocity gradient

Line optically thick

An additional optically thin line peaks at center




Infall signatures II
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dispersion o and peak optical depth t, = infall velocity v,:

Vin ® 0%/ (ViegVoiue) * IN((1+exp(Tep/Tp))/(1+exp(Trp/Tp)))

In low-mass regions v, is usually of the order 0.1 km/s. In high-mass regions
V,, can exceed 1km/s and hence be supersonic.




Summary

- Hydrostatic equilibrium between thermal pressure and gravitational force.

- Bonner Ebert mass for gravitationally stable cores.

- Can rotation support cloud stability?

- Magnetic cloud support and ambipolar diffusion

- Observational signatures of infall motions
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