Numerical Solution of Star Formation Equations

Description of protostellar collapse (Conservation equations):
Continuity equation, Momentum equation, Poisson equation, Energy equation

What are the problems: Scales, fragmentation, loss of magnetic field

(1) Density needs to increase from molecular cloud density of 10*-10° cm™ to
10%* cm™ as mean solar density: 20 orders of magnitude
(2) Central temperature needs to increase from 10 K to 107 K in order to start fusion

(3) Specific angular momentum needs to decrease:
J/M (in cm?s1)

Molecular clump 1023
Binary (P~10* yr) 4x10%0-1021
Binary (P~10 yr) 4x101°- 10%°
Binary (P~ 3yr) 4x1018- 1017
T Tauri star 1017
Sun 101

Jupiter orbit 1029



What are the problems: Scales, fragmentation, loss of magnetic field

(4) Most of the stars are binaries or occur in higher-order hierarchical systems:
fragmentation is needed

(5) Magnetic flux loss is necessary:

Dense core with M =1M,,, R.=0.07 pc, B.=30 uG

sun?

T Tauri star: R, =5R

Sun

Flux freezing: B R? = const.

B,=2x10"G - This is much larger than what is observed for T Tauri stars



Next steps:
Formulation of all equations with the necessary material equations and

boundary and 1nitial conditions.

A few remarks
Protostellar evolution from an instable cloud core
a) Dynamical collapse (t =tg)
b) Accretion phase after formation of hydrostatic core
(accretion from envelope)

Pre-main sequence evolution: Energy source from quasistatic
contraction of the core
Mathematical and physical problem:
a) Dynamical problem with dynamics on different scales
b) Complex physics ---> equations are non-linear
¢) Fragmentation must be treated (2D/3D)



(a) CONTINUITY EQUATION (1)
9 4V (p¥) =0
(b) MOMENTUM EQUATIONS (3)

A5t + Vo) = - (192 + ) + 203 + )

A =r1sin O vg (specific angular momentum)

(c) POISSON’S EQUATION (1)
V2 =47 Gp



(e) ENERGY EQUATION (1)

8’2:3 + V(pe¥) + p V¥V =1

L =4 mpk (J - B) : time rate of change of energy per
unit volume due to radiative transfer

(f) RADIATION EQUILIBRIUM (1)

VH + px (J-B(T) ) =0

' {g) FLUX (EDDINGTON APPROXIMATION) (3)

T _ 1
H=- 55V



(gray radiative transfer: use of Rosseland mean opacity
guarantees that radiative flux is identical to that in frequenc
dependent case)

(h) MATERIAL EQUATIONS

e=¢e(p, T)
k= k(p, T) see Wuchter] (1990)
p=p(p, T)

3D — 2D equations: dropping all partial derivates with
respects to ¢

2D — 1D equations: setting terms with vy or vy4 equal to
zero, neglecting the equations for v, and A(vy); dropping
terms with partial derviatives with respect to 0



INITIAL CONDITIONS

STANDARD I.C.: Spherical cloud of uniform density and temperature, which
initially everywhere at rest ‘

STANDARD I1.C. + SOLID BODY ROTATION:

e [sothermal rotating clouds:
Ll ngrav th ;, pgrav
o= E;* | BI" g = gt ) pY

e Adiabatic rotating clouds:
7 (P p), o, B
(3D: Form of perturbation has to be added)

e Nonisothermal clouds:

G, }6{: Mi':- 212,
BOUNDARY CONDITIONS (%)

No mass exterior to the protostar



Mathematical formulation (see Boss 1987)

13 physical quantities:

p (density)

Vv (velocity)

® (gravitational potential)
J (mean intensity)

H (Radiation flux)

P (gas pressure)

e (specific internal energy)
k (opacity)

T (temperature)

13 equations:

(10 coupled, nonlinear, pa.rtial diff. equations of first and second
order with strongly variable coefficients + 3 algebraic material equa-
tions)

- Bulerian form (equations are written with respect to a fixed frame
of reference)

- Spherical coordinates r, 0, ¢



Initial and boundary conditions
Standard initial conditions (Larson 1969)
Homogeneous sphere with const. T and density which 1s at rest at t=0
Standard initial conditions plus rigid rotation m;
Isothermal rotating cloud:
o, = EWEg2 =5/2 R, R T/G M, u
B, =E°YE&? = 04 nG o,
Adiabatic rotating cloud: p ~ oY ; a; and f3;

Non-isothermal clouds: o, and 3, , M, T;



Initial and boundary conditions

Boundary conditions

Why do we need boundary conditions:

Two equations of second order for ¢ and J

* Constant J or J from constant temperature condition

* @ — no mass outside protostar (observations — not realistic)



Mathematical Formulation and Solution

Coordinate System: Lagrangian or Eulerian formulation

Eulerian formulation: = Numerical diffusion has to be minimized
Lagrangian formulation: No numerical diffusion (no nonlinear advection term)

- Very complicated for multi-dimensional hydrodynamical processes
- Rezoning of grids (numerical diffusion re-introduced)

Application of particle methods instead of grid methods:

Fluid divided in cells — ,,particles” which move under the action of external forces
and interact



»»wmoothed Particle Hydrodynamics* (SPH)
(Lucy 1977; Gingold & Monaghan 1977)

Fluid divided in discrete elements. These ,,particles” have a spatial distance
(,,smoothing length*) over which their properties are smoothed by a kernel function

A(r) = 2, m; A/o; W (I -1, h) Here W is the kernel function.
Advantages:

* Large density gradients can be treated

* Boundaries can be easily introduced (non-spherical clouds)
* Gravitational interaction can be easily integrated.

Disadvantage:

Limited stability and accuracy in complex flows



Grid-based methods (resolution increase)
a) Adaptive grids
Number of grid points 1s constant; will be increased where strong gradients occur

b) Nested grids

Individual grid points will be split; number of grid points no longer constant.

Adaptive mesh refining (AMR):

Dynamical gridding during simulation; starts with coarsely resolved Cartesian grid. Then individual cells are
tagged for refinement (e.g. condition — mass per cell should remain constant

GMC simulations have reached 107 effective resolution per initial radius

Solutions: Explicit and implicit methods
Ou/dt=Lu;u=u(r,t) (L-non-linear operator)

u™!l =u"+Lu(l-¢) At+Lu™!'e At; € - interpolation parameter
€ = 0 explicit solution (time step limitation); € different from O: Implicit solution
(system of nonlinear algebraic equations)



Planet-Disk Interaction

Numerical multi-grid simulations
(D"Angelo, Kley, Henning 2003)

Type I (lower mass planets)
Spiral density waves

Type II (higher mass planets)
Creation of a gap
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First numerical solution — 1 D (Larson 1969)
1M, ,0(t=0)=10"gcem>,T=10K

Result: Non-homologous evolution (density in outer regions ~ 12)
After free-fall time: Formation of hydrostatic core and free-falling envelope
(density ~ r3/?)
At a density of 10!? to 103 cm™ T, = 100 K

Contraction of the core until 2000 K is reached and density in center 10!7 cm™?

Dissociation of molecular hydrogen (endothermic reaction; central region starts to collapse
again)

Formation of a second hydrostatic core at central density: 10> cm™ and T, = 10* -10° K
(core still accretes matter which goes through shock front)

Attheend: R=2.1 R,,,,L=1.5L,, (Confirmed by Winkler & Newman: 2 R, 1.0 L)

sun?



After Larson (1969)

1 1 ] |
14 15 -] 17

log r
Fi1c. 1. The variation with time of the density distribution in the collapsing cloud (CGS
units). The curves are labelled with the times in units of 1013 s since the beginning of the
collapse. Note that the density distribution closely approaches the form pocr—2.



Bhandare
et al. 2018

log (Central temperature / K)

Thermal Evolution of Cloud (1D)
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Cloud collapses under own gravity (otically thin, isothermal)
Then cloud becomes optically thick /heats up



Thermal Evolution in 1D

Cloud becomes optically thick at about 10-1° g/cm?; this takes about 10* yrs
R, =3au, M, = 3x102 M

Sun

Can we make a temperature estimate? Remember: W = -2 U (time average)
-GM?R =-3MR; T/u

This means: T = u/3 Rg (GM/R) = 850 K (M/5x102 M,,,) (R/5 au)!

Once T = 2000 K the H, molecule begins to dissociate
(Yegr = 1.1 smaller than 4/3 which is the value for stability)

Note: Thermal energy per H, molecule 1s small compared to dissociation energy
(U =3/2 R; T/u M; Energy/molecule = 0.74 eV; Dissociation energy; 4.48 eV)

Compression energy goes into dissociation! No longer increase of T.

After all H, is dissociated: Second hydrostatic core (R=1.8x102 au; M=4.6x10-> M,



Accretion of gas onto protostar

Gas reaches star with free-fall speed which causes an accretion shock front
(T > 10% K; UV and X-rays to be expected)

LaCC — G M*/R* (dM/dt)

=61 L, (dM/dt/ 1055 M, /yr) (M«/1 M,,,) (R+/5 Ry,,)"!

Additional energy from contraction and early nuclear fusion are negligible compared
to L. for low- to intermediate-mass stars

Definition: Low-mass protostar
Mass gaining star with L from accretion shock surrounded by an envelope
Opacity gap (no dust)
* Inner dust sublimation radius (at about 1 au)
* Effective warm radiating surface observable at mid-IR wavelengths (,,dust photosphere®)
(few au)
* Outer optically thin envelope



Evans (1999)

Observing the Collapse of a Cloud
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Fragmentation of a Cloud (SPH Simulation)

Klessen et al.
(1998)

* 222 Jeans masses
e Spectrum of Gaussian fluctuations



