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Abstract. Linear homogeneous s-order recurrences with constant coefficients

of the form a(n) = d1a(n − 1) + d2a(n − 2) + · · · + dsa(n − s), n ≥ nr, have
generating functions A(x),

A(x) =
X
i=0

a(i)xi =

Pnr−1
n=0 a(n)xn −

Ps
i=1 dix

i
Pnr−i−1

n=0 a(n)xn

1−
Ps

i=1 dixi
,

rational functions in x, where a(0), a(1) up to a(r), s ≤ r + 1, are a set of the
first few coefficients of the Taylor series which are set up independently.

1. Introduction

1.1. Aim and Notation. We consider the (ordinary) generating functions A(x)
of sequences a(n) of numbers indexed by n = 0, 1, . . ., which are the expansion
coefficients of the Taylor series [5]

(1) A(x) =
∞∑

i=0

a(i)xi.

The generating functions are shown normalized in the sense that the first power
of the Taylor expansion is the constant one; other offsets are essentially obtained
by multiplication of the generating function with powers of x to shift the index up
by arbitrary amounts.

Sequences with period length p after some optional non-periodic lower indices,
a(n) = a(n − p), or sequences with period length p and a half-period symmetry
(odd symmetry in the speak of Fourier Transforms), a(n) = −a(n− p/2), are just
special cases of these recurrences, with values |di| equal to one or zero.

Generating functions A(x) with recurrences of constant coefficients and the re-
stricted formats for inhomogeneities considered here are rational functions of x.
Decompositions in partial fractions my help to write down the generating functions
as sums of two or more other generating functions, which in turn means that a
sequence may be a term-by-term sum of more “primitive” sequences that may be
investigated by some kind of reverse engineering. (In these cases, PURRS [2] may
propose closed-form expressions for a(n).)

Sections 2 and 3 are explicit evaluations of the formula in the abstract for some
simple cases; their limiting ratio are obtained from the characteristic function [10, 9].
Section 4 looks at the simplest forms of inhomogenous recurrences.

All of this is well known, and embodied by the gfun Maple package, for example
[5, 14, 16]. My complementary Maple functions on this theme are available in
http://www.mpia.de/~mathar/progs/GenFLinRec.mp.
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1.2. Generic Formula. The generating function of recurrences [13]

(2) a(n) =
s∑

i=1

dia(n− i) + b(n), n ≥ nr,

are essentially the generating function of the homogeneous case (b = 0) plus the
generating function B(x) ≡

∑∞
n=0 b(n)xn of the inhomogeneity alone [12]:

A(x) ≡
∞∑

n=0

a(n)xn =
nr−1∑
n=0

a(n)xn +
∞∑

n=nr

a(n)xn

=
nr−1∑
n=0

a(n)xn +
∞∑

n=nr

s∑
i=1

dia(n− i)xn +
∞∑

n=nr

b(n)xn

=
nr−1∑
n=0

a(n)xn +
s∑

i=1

∞∑
n=nr−i

dix
ia(n)xn +

∞∑
n=0

b(n)xn −
nr−1∑
n=0

b(n)xn

=
nr−1∑
n=0

[a(n)− b(n)]xn +
s∑

i=1

dix
i

(
A(x)−

nr−i−1∑
n=0

a(n)xn

)
+B(x).(3)

Separating terms proportional to A(x) and those not depending on A(x) we get

(4) (1−
s∑

i=1

dix
i)A = B +

nr−1∑
n=0

[a(n)− b(n)]xn −
s∑

i=1

dix
i

nr−i−1∑
n=0

a(n)xn.

Dividing through 1 −
∑

i dix
i generalizes the equation in the abstract to nonzero

B.

2. 1-Term Homogeneous

Ordered according to increasing distance (stride) s between the indices of the
two terms that are coupled with a(n) = dsa(n− s) we have for example:

2.1. Stride 1.

(5) a(n) = d1a(n− 1); a(0) = c0;

(6) A(x) =
c0

1− d1x
.

2.2. Stride 2.

(7) a(n) = d2a(n− 2); a(0) = c0; a(1) = c1;

(8) A(x) =
c0 + c1x

1− d2x2
.

If d2 is a positive square, a decomposition in partial fractions might be useful:

(9) a(n) = k2
2a(n− 2); a(0) = c0; a(1) = c1;

(10) A(x) =
c0 + c1x

(1− k2x)(1 + k2x)
=
c0k2 − c1

2k2

1
1 + k2x

+
c0k2 + c1

2k2

1
1− k2x

.
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2.3. Stride 3.

(11) a(n) = d3a(n− 3); a(0) = c0; a(1) = c1; a(2) = c2;

(12) A(x) =
c0 + c1x+ c2x

2

1− d3x3
.

If d3 ≡ k3
3 is a cube, the follow-up decomposition in partial fractions is

(13) a(n) = k3
3a(n− 3); a(0) = c0; a(1) = c1; a(2) = c2;

A(x) =
c0 + c1x+ c2x

2

(1− k3x)(1 + k3x+ k2
3x

2)

=
1

3k2
3

2c0k2
3 − c1k3 − c2 + (c0k3

3 + c1k
2
3 − 2c2k3)x

1 + k3x+ k2
3x

2
+

1
3k2

3

c0k
2
3 + c1k3 + c2
1− k3x

.(14)

2.4. Stride 4.

(15) a(n) = d4a(n− 4); a(0) = c0; a(1) = c1; a(2) = c2; a(3) = c3;

(16) A(x) =
c0 + c1x+ c2x

2 + c3x
3

1− d4x4
.

The case of d4 = k2
4 being a square is in particular

(17) a(n) = k2
4a(n− 4); a(0) = c0; a(1) = c1; a(2) = c2; a(3) = c3;

(18)

A(x) =
c0 + c1x+ c2x

2 + c3x
3

(1− k4x2)(1 + k4x2)
=

1
2k4

c0k4 + c2 + (c1k4 + c3)x
1− k4x2

+
1

2k4

c0k4 − c2 + (c1k4 − c3)x
1 + k4x2

.

2.5. General. The obvious pattern is

(19) a(n) = dsa(n− s); a(i) = ci; 0 ≤ i < s;

(20) A(x) =
∑s−1

i=0 cix
i

1− dsxs
.

3. 2-Term Homogeneous

This is the most busy case [11]:

(21) a(n) = d1a(n− 1) + d2a(n− 2); a(0) = c0; a(1) = c1;

(22) A(x) =
c0 + (c1 − d1c0)x
1− d1x− d2x2

.

The case d1 = 0 reduces to (8).

3.1. First Term Not Coupled.

(23) a(n) = d2a(n− 2) + d3a(n− 3); a(0) = c0; a(1) = c1; a(2) = c2;

(24) A(x) =
c0 + c1x+ (c2 − c0d2)x2

1− d2x2 − d3x3
.
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3.2. Second Term Not Coupled.

(25) a(n) = d1a(n− 1) + d3a(n− 3); a(0) = c0; a(1) = c1; a(2) = c2;

(26) A(x) =
c0 + (c1 − c0d1)x+ (c2 − c1d1)x2

1− d1x− d3x3
.

3.3. First Two Terms Not Coupled.
(27)
a(n) = d3a(n− 3) + d4a(n− 4); a(0) = c0; a(1) = c1; a(2) = c2; a(3) = c3;

(28) A(x) =
c0 + c1x+ c2x

2 + (c3 − c0d3)x3

1− d3x3 − d4x4
.

3.4. First s− 1 Terms Not Coupled. (22), (24) and (28) are special cases of

(29) a(n) = dsa(n− s) + ds+1a(n− s− 1); a(i) = ci; 0 ≤ i ≤ s; s ≥ 1;

(30) A(x) =
∑s

i=0 cix
i − c0dsx

s

1− dsxs − ds+1xs+1
.

3.5. Bisections. If the denominator is a polynomial in a higher power of x, the
sequence is an overlay of de-facto decoupled subsequences. Consider for example
the generating function

(31) A(x) =
c0 + c1x+ c2x

2 + c3x
3

1− d2x2 − d4x4

which has no terms ∝ x or ∝ x3 in the denominator. This defines two subsequences
at even and odd indices of the form

a(2n) = d2a(2n− 2) + d4a(2n− 4);(32)
a(2n− 1) = d2a(2n− 3) + d4a(2n− 5),(33)

with initial values a(0) and a(2) for the even terms and a(1) and a(3) for the odd
terms. We show how the 6 parameters [four initial values a(0..3) and two coefficients
d] can be reorganized as

a(2n) = β1ea(2n− 1) + β2ea(2n− 2);(34)
a(2n− 1) = β1oa(2n− 2) + β2oa(2n− 3),(35)

with 6 parameters [four coefficients β and 2 initial values a(0) and a(1)] that mix
the two subsequences. The β are obtained as follows. Splitting A(x) in the even
function (c0 +c2x2)/(1−d2x

2−d4x
4) and the odd function (c1x+c3x3)/(1−d2x

2−
d4x

4) generates for even indices

a(2n) = [x2n]A(x) = c0[x2n]
1

1− d2x2 − d4x4
+ c2[x2n]

x2

1− d2x2 − d4x4

= c0[x2n]
1

1− d2x2 − d4x4
+ c2[x2n−2]

1
1− d2x2 − d4x4

;(36)

a(2n− 2) = c0[x2n−2]
1

1− d2x2 − d4x4
+ c2[x2n−4]

1
1− d2x2 − d4x4

,(37)
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and for odd indices

a(2n− 1) = [x2n−1]A(x) = c1[x2n−1]
x

1− d2x2 − d4x4
+ c3[x2n−1]

x3

1− d2x2 − d4x4

= c1[x2n−2]
1

1− d2x2 − d4x4
+ c3[x2n−4]

1
1− d2x2 − d4x4

.(38)

The previous two equations are a linear 2×2 system of equations for [x2n−2] 1
1−d2x2−d4x4

and [x2n−4] 1
1−d2x2−d4x4 which is solved by

(39)

[x2n−2]
1

1− d2x2 − d4x4
=
∣∣∣∣ a(2n− 2) c2
a(2n− 1) c3

∣∣∣∣ / ∣∣∣∣ c0 c2
c1 c3

∣∣∣∣ =
c3a(2n− 2)− c2a(2n− 1)

c3c0 − c2c1
;

(40)

[x2n−4]
1

1− d2x2 − d4x4
=
∣∣∣∣ c0 a(2n− 2)
c1 a(2n− 1)

∣∣∣∣ / ∣∣∣∣ c0 c2
c1 c3

∣∣∣∣ =
c0a(2n− 1)− c1a(2n− 2)

c3c0 − c2c1
.

We insert the generic recurrence for the auxiliary sequence 1, 0, d2, 0, d4, 0, d2
2 +

d4, 0, d3
2 + 2d2d4, . . .,

(41)

[x2n]
1

1− d2x2 − d4x4
= d2[x2n−2]

1
1− d2x2 − d4x4

+ d4[x2n−4]
1

1− d2x2 − d4x4

in the right hand side of (36)

(42) a(2n) = (c0d2 + c2)[x2n−2]
1

1− d2x2 − d4x4
+ c0d4[x2n−4]

1
1− d2x2 − d4x4

,

and then (39) and (40)

(43) = (c0d2 + c2)
c3a(2n− 2)− c2a(2n− 1)

c3c0 − c2c1
+ c0d4

c0a(2n− 1)− c1a(2n− 2)
c3c0 − c2c1

.

By comparison with the form (34) we conclude

β1e =
c20d4 − c22 − c0d2c2

c3c0 − c1c2
,(44)

β2e =
c3c0d2 − c1c0d4 + c3c2

c3c0 − c1c2
.(45)

The equivalent computation for the odd indices yields

β1o =
c21d4 − c1c3d2 − c23

c1c0d4 − c3c2 − c3c0d2
,(46)

β2o =
d4(c3c0 − c1c2)

c1c0d4 − c3c2 − c3c0d2
.(47)

4. Inhomogeneous

With (4), calculation of A(x) reduces to the calculation of B(x), that is, to
looking at the simpler format

(48) a(n) = b(n).
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4.1. Simple Powers. If b(n) is a linear combination of nth powers with constant
coefficients with optional offsets oj ,

(49) a(n) =
∑
j=0

djb
n−oj

j ,

where neither the dj nor the bj nor the oj depend on n, the generating function is
the associated geometric series [1, 3.1.10]

(50) A(x) =
∑
j=0

djb
−oj

j

1
1− bjx

.

4.2. Polynomials. The case of the constant term

(51) a(n) = 1

is the simplest form of (50) with the generating function [1, 3.6.10]

(52) A(x) =
1

1− x
.

k-fold differentiation with respect to x computes the generating functions of kth
order polynomials of n of the format

(53) a(n) = n(n− 1)(n− 2) · · · (n− k + 1) = n!/(n− k)!,

(54) A(x) =
k!xk

(1− x)k+1
; k = 0, 1, 2, . . . .

(See [17, (1.1)] for the determination of the exponential generating function along
the same lines.) Decomposition of the general kth order polynomial into a sum of
polynomials of this special kind by aid of the Stirling Numbers of the Second Kind
S [1, 24.1.4] pairs the polynomial

(55) b(n) =
∑
j=0

ejn
j

with constant coefficients ej with the generating function

(56) A(x) =
∑
j=0

ej

j∑
k=0

S(k)
j k!

xk

(1− x)k+1
.

The same methodology of repeated differentiation with respect to x may be
applied to the more general (50) and allows construction of generating functions for
a(n) =

∑
j=0

∑
k=0 ek,jn

kbnj , sums of products of simple powers and polynomials.

5. Transformation of Series

5.1. Multisection, Delta-Operator. Generating functions of

• multisections of sequences and the inverse—which is a shuffling operation
of many sequences into one—[6]
• first and higher order differences

are implemented as described by Riordan [15].
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5.2. Binomial Transform. The (inverse) binomial transform relates two sequences
a(n) and b(n) via

(57) a(n) ≡
n∑

k=0

(
n

k

)
b(k); b(n) ≡

n∑
k=0

(−1)n−k

(
n

k

)
a(k); ,

which induces a relation between the generating functions A(x) ≡
∑

n a(n)xn and
B(x) ≡

∑
n b(n)xn as follows [3, 7, 8, 21, 20]:

A(x) =
∞∑

n=0

n∑
k=0

(
n

k

)
b(k)xn =

∞∑
k=0

∞∑
n=k

(
n

k

)
b(k)xn

=
∞∑

k=0

∞∑
s=0

(
s+ k

k

)
b(k)xs+k =

∞∑
k=0

b(k)xk
∞∑

s=0

(
s+ k

k

)
xs

=
∞∑

k=0

b(k)xk 1
(1− x)k+1

=
1

1− x

∞∑
k=0

b(k)
(

x

1− x

)k

=
1

1− x
B

(
x

1− x

)
.(58)

(59) B(x) =
1

1 + x
A

(
x

1 + x

)
.

These methods can be chained to provide generating functions of other transforms
[18, 19, 22].
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