EQUIVALENCE OF A020483 AND A054906

RICHARD J. MATHAR

Abstract

A claim by Labos Elemer is that finding primes p which have a distance $2 n$ to another prime q is essentially the same as finding x that solve $\sigma(x+2 n)=\sigma(x)+2 n$. We attempt to proof this conjecture.

1. Definitions

Definition 1. Sequence [1, A020483] is defined by the smallest prime p which has a distance $2 n$ to another prime q :

$$
\begin{equation*}
p+2 n=q . \tag{1}
\end{equation*}
$$

Remark 1. This does not mean that the prime gap after p is $2 n$ because there may be other primes between p and q, see [1, A000230].
Definition 2. Sequence [1, A054906] is defined by the smallest integer solution x to

$$
\begin{equation*}
\sigma(x+2 n)=\sigma(x)+2 n \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(n) \equiv \sum_{d \mid n} d \tag{3}
\end{equation*}
$$

is the sums-of-divisors function [1, A000203].
This is multiplicative with

$$
\begin{equation*}
\sigma\left(p^{e}\right)=\frac{p^{e+1}-1}{p-1}=1+p+p^{2}+\cdots+p^{e} \tag{4}
\end{equation*}
$$

Definition 3. (Sums of proper divisors)

$$
\begin{equation*}
\bar{\sigma}(n) \equiv \sum_{d \mid n, 1<d<n} d \tag{5}
\end{equation*}
$$

is the sum of the proper divisors of n [1, A048050].
For all relevant cases (i.e., $x+2 n>1$), (2) is equivalent to

$$
\begin{equation*}
\bar{\sigma}(x+2 n)=\bar{\sigma}(x) \tag{6}
\end{equation*}
$$

Heuristically we find that the sequence of the p is the same as the sequence of the x for at least $n \leq 1,560,000$, and this here shows first steps to proof the conjecture:

Conjecture 1. Sequences A020483 and A054906 are the same.

Date: April 29, 2015.
Key words and phrases. sigma, sum of divisors, primes.

2. Forward Part of the Proof

Supposed a solution p to (1) has been found, this p solves (2) with $x=p$, because then clearly
(7) $\sigma(x+2 n)=\sigma(p+2 n)=\sigma(q)=1+q=1+p+2 n=\sigma(p)+2 n=\sigma(x)+2 n$ due $\sigma(p)=1+p$ for primes p. Given such p we thus have found an upper bound to x, therefore

Theorem 1.

$$
\begin{equation*}
A 054906(n) \leq A 020483(n) \tag{8}
\end{equation*}
$$

It remains to show vice versa that solutions x are upper bounds to solutions p. This is incompletely shown in the next section.

3. Attempted Reverse Part of the Proof

3.1. Prime x. The solutions x to (2) may either be prime or composite-see [1, A054905] for the smallest composite x.

Theorem 2. If a solution x to (2) is prime, then $x+2 n$ is also prime.
Proof. If the solution x to (2) is prime, then

$$
\begin{equation*}
\sigma(x)+2 n=1+x+2 n \tag{9}
\end{equation*}
$$

In conjunction, $x+2 n$ may either be prime or composite (discarding the marginal case where $x+2 n=1$ is neither prime nor composite). If $x+2 n$ is composite, $\sigma(x+2 n)>1+x+2 n$ because then $x+2 n$ must have at least one divisor besides 1 and $x+2 n$ that contributes to $\sigma(x+2 n) .{ }^{1}$ This inequality means to (9) that $\sigma(x)+2 n=1+x+2 n<\sigma(x+2 n)$, so x cannot solve (2), therefore the assumption that $x+2 n$ is composite cannot be true.

Theorem 2 says that prime solutions x to (2) are solutions to (1). So the smallest x in the sorted listed of prime solutions to (2) is an upper bound to the n-th entry of sequence A020483. This statement is a kind of incomplete reversal of the sign in (1); it is incomplete because the list of all solutions to (2) might also start with a composite x. To complete the proof we need to show that the smallest x is always prime (never composite), so conjecture 1 is proven if we proof

Conjecture 2. The smallest solution x to (2) is always prime.
3.2. Composite x. The prime solutions x to (2) are minimalistic in the sense that they solve (6) with both sides becoming zero, whereas for composite x both sides are larger than zero.

References

1. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc. 50 (2003), no. 8, 912-915, http://oeis.org/. MR 1992789 (2004f:11151)
E-mail address: mathar@mpia.de
URL: http://www.mpia.de/~mathar
Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
[^0]
[^0]: ${ }^{1}$ meaning that [1, A062825] is positive for all composite arguments.

