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ABSTRACT

Theforming of metalsisimportant in many manufacturing industries. It haslong been known that mi-
crostructure and texture affect the properties of a material, but to date l[imited progress has been made
in predicting microstructural development during thermomechanical forming due to the complexity
of the relationship between microstructure and local deformation conditions.

In this paper we investigate the utility of non-linear interpolation models, in particular Gaussian pro-
cesses, to model the development of microstructure during thermomechanical processing of metals.
We adopt aBayesian approach which allows: (1) automatic control of the complexity of the non-linear
model; (2) calculation of error bars describing the reliability of the model predictions; (3) automatic
determination of the relevance of the variousinput variables. Although this method is not intelligent
in that it does not attempt to provide afundamental understanding of the underlying micromechanical
deformation processes, it can lead to empirical relations that predict microstructure as a function of
deformation and heat treatments. These can easily be incorporated into existing Finite Element forg-
ing design tools. Future work will examine the use of these models in reverse to guide the definition
of deformation processes aimed at delivering the required microstructures.

In order to thoroughly train and test a Gaussian process or neural network model, a large amount of
representative experimental datais required. Initial experimental work has focused on an Al-1%Mg
alloy deformed in non-uniform cold compression followed by different annealing treatmentsto build
up a set of microstructural data brought about by a range of processing conditions. The DEFORM

Finite Element modelling package has been used to calculate the local effective strain as afunction of
position across the samples. Thisis correlated with measurements of grain areas to construct the data
set with which to devel op the model.

THE METALLURGICAL PROBLEM
To optimize any component it is necessary to consider not only the alloy composition but also its mi-
crostructure. For example, in the aerospace industry, high-performance nickel alloys may go through
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many hot forging and annealing stages, at great cost and over a period of several days, before the de-
sired microstructure is obtained [1]. A reliable model for predicting microstructural evolution could
greatly improve manufacturing efficiency.

The principa factors influencing microstructure during thermomechanical processing are recovery,
recrystallisation and grain growth. These can be examined on the fundamental level of dislocation
densities and subgrain forms and sizes [2] from which details of the recrystallisation are theoretically
predictable [3]. However, such features are difficult and time-consuming to measure and lie beyond
the scope of most industrial companies. A more feasible approach is to focus on more accessible
processing parameters such as local temperature, strain, strain rate etc. and to use numerical models
to relate their influence on microstructural features such as grain size and extent of recrystallisa-
tion [4][5].

BAYESIAN PROBABILISTIC MODELLING OF DATA

In many cases, a prediction problem can be posed as an interpol ation problem. The problem addressed
in thispaper isthe prediction of the mean grain size ((A)) in aregion of acold deformed and annealed
sample as a function of loca strain (¢), annealing temperature (7') and annealing time (7). One ap-
proach to a problem of thistypeis to calculate a physical relationship between the dependent variable
and the measured variables from fundamental scientific principles [6]. Such a relationship will usu-
ally be governed by a number of parameters which have to be determined empirically [3][4]. This
semi-empirical approach will generally only be reliable when applied to smple problems: Many real
prediction problemswill be too complex for such an approach to yield realistic or useful results[7].

For many problems, then, a more flexible approach to prediction is required. The purely empirical
method makes use of a set of training data to characterize the rel ationship between anumber of inputs,
x (such ase, T and 7) and the corresponding output, ¢, which we are interested in predicting (such
as (A)). (We shall consider predictions of only one variable.) The training data set, D, consists of a
set of N inputs, Xy (= {x1,x2,...,%xx}), and the corresponding N outputs, ty. We are interested
in interpolating these data using a model in order to be able to make predictions of ¢ at values of x
which are not present in the training data. Generally, the measured values of ¢ will contain noise, v,
so model’s prediction, y(x), is related to the target output by ¢ = y(x) + v.

A common approach to this noisy interpolation problem is to parameterize the function, y(x, w),
where w is a set of parameters which are determined from the training data using methods such as
least-squares minimisation of some cost function, /. This is the approach taken by feed-forward
multi-layer perceptron neural networks, which provide a suitable framework for evaluating a non-
linear interpolating function (interpolant) of a set of training data [8]. The parameters in these net-
works are represented by a set of weights: Training the neural network is the process of calculating
the optimum weights by minimizing the cost function, F(w).

Bayesian probabilistic data modelling is a robust and powerful approach to prediction problems and
can be readily incorporated into the neural network approach [8]. Rather than giving a single ‘opti-
mum’ prediction, Bayesian methods provide a probability distribution over the predicted value. This
is often very important as it can be used to produce a characteristic error in the predictions which
represents the uncertainty arising from interpolating noisy data. The probability of the data given
the weights, the likelihood, can be written P(D|w, 3) « exp~"F. 3 is a so-caled hyperparameter
which parameterizes the probability distribution and is related to the noise variance, v, in the target
outputs. The maximum likelihood approach to training a neural network (minimizing £) is therefore
equivalent to maximizing P(D|w, 3). However, we normally include an explicit prior on the weights
to specify our belief concerning the distribution of the weights in the absence of any data. This can
be written P(w|a), where « is another hyperparameter. This prior is often used to give preference
to smoother interpolating functions rather than rapidly varying ones which may over-fit the training
data. This prior is particularly important when trying to model sparse data sets as it will generally
improve the reliability of predictions. We then apply Bayes' theorem to the prior and the likelihood



to give the posterior probability distribution of the weights given the data

D|w,3)P(w]|a)
P(D)

P(w|D,a, ) = il (1)

It is this quantity which we should maximize when training the neural network [8]. (We can ignore
the denominator, P( D), when making predictions with a single model and data set, .)

The Bayesian approach to prediction prescribes that we marginalize (i.e. sum) over uncertain pa-
rameters. We should, therefore, ideally integrate over all values of the weights rather than opti-
mize them. We are interested in predicting a new value, ¢y 1, given its corresponding input, xy 1,
and the set of training data, D. In terms of probability distributions we are interested in finding
P(tyi1|xn41, D, e, 3). Thisis obtained by integrating over all possible values of the weights:

P(tN+1|XN+17D7a75) = /P(tN+1|XN+17Dvwvavﬁ)P(W|D7aaﬁ)dw . (2)

The maximum of P({y41|xn+1, D, «, 3) yields the most probable prediction for ¢ .1. The integra-
tion can be performed by Monte Carlo methods or by making simplifying assumptions about theform
of P(w|D, a, ). Thislatter approach is often equivalent to making predictions at the optimum values
of the weights found by maximizing P(w|D, «, 3) in equation 1.

Note that we are really interested in P({y41|xn41, D) rather than Pty y1|xn41, D, o, 3). Thisis
obtained from equation 2 by also integrating over the hyperparameters o and 5 (although it is often
adequate to optimize o and 3). These hyperparameters are important because they control the com-
plexity of themodel. They are distinct from parameters (i.e. the network weights) which parameterize
the input—output mapping. One of the advantages of the Bayesian approach to data modelling is that
it automatically embodies complexity control by means of these hyperparameters|[9].

GAUSSIAN PROCESSESFOR MODELLING

From the Bayesian perspective, we are interested only in P({x41|xn41, D): We are not interested in
the network weights themselves. Given that we should integrate over all weights, a preferable model
is one which does not have such weights at all. The Gaussian process can be considered as a neural
network in which we have integrated over all possible values of the weights.

The Gaussian process approach to the prediction problem assumes that the joint probability distribu-
tion of any N output values, t, isan N-dimensional Gaussian [10][11][12]

Ptx|Xnx, ©) = %exp (—%(t]\f )T (b — “)) . 3

For example, thisappliesto the NV valuesin thetraining dataset, 1, defined on the previouspage. This
distribution is completely determined by the mean, g, and the covariance matrix, C . The elements
of Cy are given by the covariance function, C;; = C(x;,x;, ®), where x; and x; are any two inputs
and © isaset of hyperparameters. The form of €' isimportant and will be discussed shortly.

Let ty41 be the vector composed of the output values in the training data, t, and the point we
wish to predict, {y41. ASequation 3 can applied to any value of V, it also describes the probabil-
ity distribution of ty 1, which isan N+1-dimensional Gaussian P(ty41|xn+1, Xn, ©). The pre-
dictive probability distribution for {41 iSjust P(tyi1|xn+1, Xn, ®)/P(ty| Xy, @), which is the
one-dimensional Gaussian, P(ty+1|xn+1, D, ®). The mean and standard deviation of this Gaussian
distribution can be evaluated analytically in terms of the new input value, x .1, the training data, D,
and the hyperparameters, ®. Note that this Gaussian refers to the probability distribution over the
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Figure 1. Schematic description of how a Gaussian process interpolates a function to make predic-
tions. We consider here the simple case of the parameter of interest (¢) having only one dependent
variable (z). Given aset of N training data points, the model provides a predictive Gaussian proba-
bility distribution over ¢ at a new point x ;. The mean and standard deviation of this Gaussian are
evaluated from x 1, the N training data points and a set of hyperparameters. These hyperparameters
(which are evaluated using the training data) control the smoothness of the interpolant. Note that we
do not assume that the function ¢(z) is a sequence of Gaussians.

predicted output: we do not assume that the interpolating function isa Gaussian. Figure 1 summarizes
schematically the prediction process with a Gaussian processwith N = 4.

The form of the covariance function, C', is specified by our assumptions regarding the form of the
interpolant. We will generally be interested in producing a smooth interpolant. This can be achieved
by including a term in C' which gives a larger positive contribution to C;; the closer together two
inputs are: A larger value of C;; means that ¢; and ¢; are more closely correlated, i.e. they are more
likely to have similar values. The degree of correlation achieved by a given proximity of the inputs
(i.e. the smoothness of the interpolant) is dictated by the length scal e hyperparameters which param-
eterizethistermin C'. Thereis one of these hyperparametersfor each input dimension. In addition to
controlling the smoothness of the interpolant, the relative sizes of the length scales are a measure of
the relevance of each input dimension in determining the output. Thus we could assess (for example)
whether local strain is more relevant than annealing temperature in determining recrystallized grain
size. The noisein the datais represented in the covariance function by another term with another hy-
perparameter. These hyperparmetersare evaluated from the training data by maximizing P(®| D), the
probability of the hyperparameters given the training data. We would typically include explicit priors
on the hyperparametersto express our prior knowledge of the noise in the data and the smoothness of
the underlying function. Once determined, we can evaluate P({y41|xn41, D, ©®) to give predictions
(with errors) at any new input value, x .. Figure 2 shows the application of a Gaussian process to
the interpolation of data drawn from a noisy sine function with increasing amounts of data.

PREDICTING MICROSTRUCTURE
We have applied a Gaussian process to the problem of predicting the area of recrystallized grainsin
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Figure 2: A Gaussian process interpolation of noisy data drawn from a sine function. The noise is
Gaussian with standard deviation = 0.1. The four plots show the results of using a Gaussian process
to interpolate data sets with N = 3,4, 6, 11 data points. The solid line is the interpolated function;
the dashed lines are the corresponding 1o error bars. The accuracy with which the interpolant ap-
proximates a sine function improves as more data are added to the training data set. In regions more
distant from the data the interpolant isless-well confined, and thisisreflected by the larger error bars
predicted by the model. Thisis particularly true outside the limits of the data sets where the model is
attempting to extrapolate. Note that the particular covariance function used here makesthe interpolant
tend towards zero in regions well away from the data.

a deformed and subsequently annealed Al-1%Mg alloy as a function of local strain (¢), annealing
temperature (7") and annealing time (7). Our training data were obtained from the plane strain com-
pression of two workpieces (20% and 40% size reduction) which were sectioned to produce a total
of 20 samples[13]. These were then annealed at 325°C, 350°C or 375°C for 2, 5, 10, 30 or 60 mins.
The DEFORM Finite Element package was used to calculate the local strain at different regionsin
these samples. Thisyielded a set of 57 measurementsof ¢, 7' and 7 to act asthe inputsin the training
data set. The corresponding outputs—the mean grain areas, (A)—were evaluated by sectioning the
samples and measuring areas using the Kontron Elektronik KS400 package. This data set was then
used to train (infer the most probable hyperparameters of) a Gaussian process model. The length
scale hyperparameters indicated that the three inputs were of roughly equal relevance, as expected.
The model was then used to predict the dependence of (A) on each of ¢, T and = whilst holding the
other two constant. These predictions are shown in Figure 3b—d. As atest of the quality of the model
we trained it on 3/4 of the data and then used it to predict the (A) values of the remaining 1/4 of
the data on which it was not trained. Figure 3a shows predicted area vs. measured area for this test
data. A second Gaussian process model was used to predict the extent of recrystallisation asafunction
of thesameinput parameters (¢, 7', 7), and the results combined with predicted grain areasin Figure 4.

DISCUSSION

The results presented in this paper demonstrate the feasibility of using a Gaussian process model to
predict microstructural development. Figure 3a demonstratesthat the model has generalized well, i.e.
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Figure 3: Gaussian process prediction of recrystallized grain areain an auminium alloy. All errors
arelo errors. (a) Theaccuracy of the Gaussian process model was assessed by training it on 3/4 of the
data and using the model to predict the remaining 1/4. The over-plotted lineisthe y = x line, although
no model can make exact predictions due to the noise in the measured values of (A). Because (A)
covers a large dynamic range, the model was developed using log(A). In (b)—(d) the model was
trained on the full data set and used to predict (A) as afunction of each of the three input parameters
with the other two held constant. When not being varied, theinputswere held constant at: 7' = 350°C;
d = 30 mins; ¢ = 0.5. The crossesin (d) are points from the training set: It is important to realise
that the entire training set is used to make the predictions and not just the data points shown.

hasidentified underlying trendsin the training data. These trends are shown explicity in Figures 3b—d,
and are in broad agreement with those identified by others[1]. An exception to thisisthe slight fall-off
in(A) at extended annealing times. However, the uncertainty predicted by the model isrelatively large
in this region—due to the sparseness of the training data at high 7—and the model is not inconsi stent
with alevelling-off at high temperatures. A more rigoroustest of the model’s capabilitiesisto useit to
predict microstructure at different processing conditions, e.g. with different deformation geometries.

The average size of the error bars on the predictions in Figure 3a is é(log(A)) = 0.18, which is
equivalent to an error in (A) of ~40%. These error bars are calculated by the model and represent
the uncertainty in its predictions. The sources of this uncertainty which will be discussed shortly. In
contrast to these error bars, we can measure the actual scatter (RMS error) of the predicted values of
the grain areas about their measured values: thisis0.16. That these two values are similar can be seen
graphically from the fact that most of the error bars on the predictions overlap with the y =z linein
Figure 3a. This demonstrates that the errors predicted by the model are commensurate with the true
scatter of its predictions about their measured values. A model which predicted inappropriately sized
error bars would be of limited practical value, as would one which predicted no errors at all.



Figure 4: A 40% reduced sample annealed for 2 mins at 350°C. (a) The variation in microstructure
across half a section; (b) schematic illustration of the same variation in microstructure deduced by
combining the results from a Gaussian process model used to predict grain size variation and a second
Gaussian process model used to predict extent of recrystallisation. The contoursin (b) show 0%, 50%
and 90% recrystallisation as predicted by the second Gaussian process model.

The uncertainty in the model’s predictionsis due largely to noise in the training data: the microstruc-
tural input data were noisy and sparse; theinitial grain sizes were large (diameter ~ 1 mm), making
for inhomogeneous nucleation; in some cases large recrystallised grain sizes meant that the number
of grains used to evaluate (A) was fewer than ten; difficultiesin accurately identifying recrystallized
grains leads to biased estimations of (A). Despite these deficiencies, the Gaussian process model
appears to provide good simulations (Figure 3b—d) which do not overfit this noisy data. Thisis one
of the advantages of the Bayesian approach: It trades off the complexity of the model with obtaining
agood fit of the training data. Smaller uncertainties in predictions can be obtained through use of a
larger and more accurate data set.

ACKNOWLEDGEMENTS

The authors are grateful to the EPSRC, DERA and INCO Alloys Limited for financial support and to
Mark Gibbs for use of his Gaussian process software (obtainable from http://wol.ra.phy.cam.ac.uk/).

REFERENCES

D. Lambert, INCO AlloysLtd, Hereford, U.K. Private communications with T.J. Sabin, 1996.

G.I. Rosen, D. Juul Jensen, D.A. Hughes, N. Hansen, Acta Metall., 43(7), 1996, p. 2563.

T. Furu, H.R. Shercliff, C.M. Sellars, M.F. Ashby, Mat. Sci. Forum, 217-222, 1996, p. 453.

J. Kusiak, M. Pietrzyk, J.-L. Chenot, 1S J Int., 34(9), 1994, p. 755.

PL. Orsetti Rossi, C.M. Sdllars, Mat. Sci. Forum, 217-222, 1996, p. 379.

M. Avrami, J. Chem. Phys,, 7, 1939, p. 1103-1112.

F.J. Humphreys, Mater. Sci. Technol., 8, 1992, p. 135.

D.J.C. MacKay, Network: Computation in Neural Systems, 6, 1995, p. 469.

D.J.C. MacKay, Neural Computation, 4, 1992, p. 415.

0. N. Cressie, Statistics for Spatial Data, Wiley, Chichester, 1992.

11. C.K.I. Williams, C.E. Rasmussen, in Advances in Neural Information Processing Systems 8
(D.S. Touretzky, M.C. Mozer, M.E. Hasselmo, eds.), MIT Press, Boston, 1996.

12. M.N. Gibbs, D.J.C. MacKay, in preparation (see http://wol.ra.phy.cam.ac.uk/mng10/GF/), 1997.

13. T.J. Sabin, C.A.L. Bailer-Jones, SM. Roberts, D.J.C. MacKay, PJ. Withers, to be presented at

THERMEC 97 (International Conference on Thermomechanical Processing), July 1997.

ROONoG~WNE

7



