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Abstract. Large scale, deep survey missions such as GAIA
will collect enormous amounts of data on a significant fraction
of the stellar content of our Galaxy. These missions will re-
quire a careful optimisation of their observational systems in
order to maximise their scientific return, and will require reli-
able and automated techniques for parametrizing the very large
number of stars detected. To address these two problems, I in-
vestigate the precision to which the three principal stellar pa-
rameters (Teff , log g, [M/H]) can be determined as a function
of spectral resolution and signal-to-noise (SNR) ratio, using a
large grid of synthetic spectra. The parametrization technique is
a neural network, which is shown to provide an accurate three-
dimensional physical parametrization of stellar spectra across a
wide range of parameters. It is found that even at low resolution
(50–100Å FWHM) and SNR (5–10 per resolution element),
Teff and [M/H] can be determined to 1% and 0.2 dex respec-
tively across a large range of temperatures (4000–30 000 K) and
metallicities (−3.0 to+1.0 dex), and thatlog g is measurable to
±0.2 dex for stars earlier than solar. The accuracy of the results
is probably limited by the finite parameter sampling of the data
grid. The ability of medium band filter systems (with 10–15
filters) for determining stellar parameters is also investigated.
Although easier to implement in a unpointed survey, it is found
that they are only competitive at higher SNRs (≥ 50).

Key words: methods: data analysis – methods: numerical –
surveys – stars: Hertzsprung–Russel (HR) and C-M diagrams –
stars: fundamental parameters – Galaxy: stellar content

1. Background and objectives

An understanding of the origin, properties and evolution of our
Galaxy requires a careful census of its constituents, in particu-
lar its stellar members. Of special importance are the intrinsic
physical properties of these stars. The fundamental properties
are mass, age and abundances, as these determine a star’s history
and future development. However, ages are not observable, and
masses can only be directly obtained from some multiple sys-
tems. Thus we must indirectly gain this information via the stel-
lar spectrum, and a number of atmospheric parameters have been

defined for this purpose. The main ones are the effective temper-
ature,Teff , the surface gravity,log g, and the metallicity, [M/H].
To these can also be added the alpha abundances,{αi} (which
measure the devations away from the ‘standard’ abundance ra-
tios), the photospheric microturbulence velocity,Vmicro, and the
extinction by the interstellar medium, A(λ)(although not intrin-
sic to the star, it is necessary for determining its luminosity).
Masses and ages can then be determined from stellar structure
and evolution models and with calibration via binary systems.
It is important to realise that this modelling is complex, and a
number of assumptions have to be made. There is, therefore,
a limit to how well we can determine physical properties from
spectra.

Historically, spectroscopic parameters have been measured
indirectly through the MK classification system (Morgan et al.
1943) or via colour-magnitude and colour-colour diagrams. In
the MK system, the two parametersspectral typeandluminosity
classact as proxies forTeff andlog g. Originally a qualitative
system relying on a visual match between observed spectra and
a system of standards, much progress has been made in quantify-
ing it with automated techniques (e.g. Weaver & Torres-Dodgen
1997; Bailer-Jones et al. 1998). The most commonly used classi-
fication techniques have been neural networks andχ2 matching
to templates (or more generally, minimum distance methods). A
summary of recent progress in this area is given by von Hippel
& Bailer-Jones (2000).

Despite this focus on the MK system, it is not well suited
to classifying data from the deep surveys which will be central
to the future development of Galactic astrophysics. This is for a
number of reasons, but in particular because it lacks a measure
of metallicity. Although MK does make allowance for various
‘peculiar’ stars, these are defined as exceptions, and the notation
is not suited to a statistical, quantifiable analysis. This is prob-
lematic given the significance of metal poor halo stars in a deep
survey. There is also now no good reason why we should not
determine physical parameters directly from the observational
data.

Some attempts have been made to determine the physical
parameters of real spectra directly by training neural networks
on synthetic spectra. Gulati et al. (1997a) used this approach to
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determine the effective temperatures of ten solar metallicity G
and K dwarfs. Taking the “true” effective temperatures of these
stars as those given by Gray & Corbally (1994), they found a
mean “error” in the network-assigned temperatures of 125 K.
Bailer-Jones et al. (1997) determinedTeff for over 5000 dwarfs
and giants in the range B5–K5, and also showed evidence of
sensitivity of the parametrization models to metallicity.

The accuracy with which physical parameters can be de-
termined from a stellar spectrum depends upon, amongst other
things, the wavelength coverage, spectral resolution and signal-
to-noise ratio (SNR). From the point of view of designing a
stellar survey project it is essential to know how well the stellar
parameters can be determined for a given set of these observa-
tional parameters. Moreover, given that there is always a limit
to the collecting area and integration time available, there is al-
ways a trade-off between spectral resolution, sensitivity and sky
coverage.

The goal of this paper is to determine the accuracy with
which physical stellar parameters can be determined from spec-
troscopic data at a range of SNRs and resolutions which could
realistically be achieved in adeepsurvey mission. This speci-
fication rules out high resolution spectra. The parametrization
work has been carried out using neural networks (Sect. 3) be-
cause they have been shown to be one of the best approaches for
this kind of work. This is not to presuppose, however, that some
other approach may not ultimately be better. The simulations
have been made using a large database of synthetic spectra gen-
erated from Kurucz atmospheric models (Sect. 4). While these
spectra do not show the full range of variation in real stellar
spectra, they are adequate for a realistic demonstration of what
is possible as a function of SNR and resolution. The results are
presented in Sect. 5 and summarised and discussed in Sect. 6.
Finally, the requirements for a complete survey-oriented classi-
fication system are given in Sect. 7.

2. The GAIA Galactic survey mission

The simulations in this paper were partially inspired by the need
to produce an optimal photometric/spectroscopic system for the
GAIA Galactic survey mission. GAIA is a candidate for the
ESA cornerstone 5 mission for launch in 2009 (ESA, in prepa-
ration). It is primarily an astrometric mission with a precision of
a few microarcseconds, and will survey the entire sky down to
V=20, thus observing c. 109 stars in our Galaxy. Radial veloci-
ties will be obtained on board down to V=17.5, thus providing
a 6D phase space survey (three spatial and three velocity co-
ordinates) for stars brighter than this limit. A survey of this size
will have a profound impact on Galactic astrophysics, but to
achieve this it is essential that the physical characteristics of
the target objects are measured and correlated with their spatial
and kinematic properties. As GAIA is a continuously scanning
satellite, a fixed total amount of integration time is available for
each object, so there is a trade-off between resolution, signal-to-
noise ratio and wavelength coverage. For various reasons, the
current GAIA design does not include a spectrograph (other than
a 1.5Å resolution region between 8470 and 8700Å intended for

Table 1. Three multiband filter systems proposed for the GAIA mis-
sion. All profiles are symmetric about the central wavelength,λc, and
have a FWHM of∆λ. The profiles of the filters in the Asiago and
modified Str̈omvil systems (F. Favata 1999, private communication)
are defined as Gaussians (although note that the former is only an ap-
proximation to the original Asiago system in Munari 1999). The filters
of the selected GAIA system (ESA, in preparation) have flatter tops
and steeper sides than Gaussians, and have defined relative peak trans-
missions, T. There is some (intended) redundancy within each filter
system.

Asiago mod Str̈omvil GAIA
λc / Å ∆λ / Å λc / Å ∆λ / Å λc / Å ∆λ / Å T
3000 1410 3450 400 3260 820 0.92
3860 190 3800 300 3750 1460 0.96
4090 170 4050 200 4050 600 0.90
4300 120 4450 1100 4645 450 0.86
4800 1500 4600 200 5075 270 0.78
5270 80 5150 200 5250 2070 0.97
5310 170 5450 200 5700 900 0.93
6300 1500 5500 1000 6560 240 0.72
7920 1720 6500 1000 6740 1160 0.94
9640 1700 6560 200 7330 1850 0.97

7500 1000 7470 280 0.79
8000 400 7775 310 0.81
8500 1000 8160 480 0.87
8700 300 8940 480 0.97
9380 200

radial velocity determination), but instead will image all objects
in several medium and broad band filters (Table 1). Three filter
systems are shown: the system nominally selected for the mis-
sion plus two alternatives. The profiles of the two alternatives
are represented as Gaussians in this paper. The ability of these
filter system to determine stellar parameters will be compared
with that for spectra of various resolutions.

3. The network model

A neural network is an algorithm which performs a non-linear
parametrized mapping between an input vector,x, and an output
vector,y. (The term ‘neural’ is misleading: although originally
developed to be very simplified models of brain function, many
neural networks have nothing to do with brain research and are
better described in purely mathematical terms.) The network
used in this paper is a feedforward multilayer perceptron with
two ‘hidden layers’. These hidden layers form non-linear com-
binations of their inputs. The output from the first hidden layer
is the vectorp, the elements of which are given by

pj = tanh

(∑
i

wi,jxi

)

These values are then passed through a second hidden layer
which performs a similar mapping, the output from that layer
being the vectorq
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qk = tanh


∑

j

wj,kpj




The output from the network,y, is then the weighted sum of
these

yl =
∑

k

wk,lqk

Thetanh function provides the non-linear capability of the net-
work, and the weights,w, are its free parameters. The model is
supervised, which means that in order for it to give the required
input–output mapping it must be trained on a set of representa-
tive data patterns. These are inputs (stellar spectra) for which the
truetargetoutputs (stellar parameters) are known. The training
is a numerical least-squares minimisation: Starting with ran-
dom values for the weights, a set of spectra are fed through the
network and the error in the actual outputs with respect to the de-
sired (target) outputs calculated. The gradient of this error with
respect to each of the N weights is then used to iteratively perturb
the weights towards a minimum of the error function. Thus the
training is a minimisation problem in an N-dimensional space,
and the resulting input–output mapping can be regarded as a
non-linear interpolation of the training data. Once the network
has been trained the weights are fixed and the network used to
obtain physical stellar parameters for new spectra.

The results in this paper use a network code written by the
author consisting of five and ten hidden nodes in the first and sec-
ond hidden layers respectively. The complexity of the network
is determined by the number of hidden nodes and layers. While
networks with a single hidden layer can provide non-linear map-
pings, experience has shown that a second hidden layer can lead
to considerable improvement in performance (Bailer-Jones et
al. 1998). This has been confirmed with the data in this paper.
Significant further improvement is not expected through the ad-
dition of more hidden nodes/layers. The network has three out-
puts, one for each of the parametersTeff , log g and [M/H]. The
error which is minimised is the commonly-used sum-of-squares
error (the sum being over all training patterns and outputs), ex-
cept that the error contribution from each output is weighted by
a factor related to the precision with which that parameter can
be determined.

I stress that a neural network is not fundamentally different
from many other parameter fitting algorithms. Its strengths are
that it has a fast and straight-forward training algorithm, can map
arbitrarily complex functions (given sufficient data to determine
the function), and can be parallelised in software or hardware
to achieve considerable increases in speed. One of the common
criticisms of neural networks is that it is difficult to interpret
their weights and get an idea of exactlyhow they achieve their
results. While this is essentially true, part of this difficulty stems
from the fact that the models are problem-independent: they
are purely mathematical models that do not explicitly take into
account the physics of the problem. Moreover, in order to fully
understand the model it would be necessary to simplify it, and
this in turn would reduce its performance. This “interpretability–

complexity” trade-off is inherent to almost any type of heuristic
model.

4. Synthetic spectra

A large grid of synthetic spectra have been generated using
Kurucz atmospheric models (Kurucz 1992) and the synthetic
spectral generation program of Gray (Gray & Corbally 1994).
The parameter grid consists of 36Teff values between 4000 K
and 30 000 K (step sizes between 250 K and 5000 K), 7 values
of log g between 2.0 and 5.0 dex (in 0.5 steps) and 15 values of
[M/H] between−3.0 and+1.0 dex (step sizes between 0.1 and
0.5). The microturbulence velocity was fixed at 2.0 kms−1. This
yielded an (almost complete) grid of 3537 atmospheric models.
Contiguous spectra were calculated between 3000 and 10 000Å
in 0.05Å steps with a line list of over 900 000 atomic and molec-
ular lines. The resolution,r, of these spectra was then degraded
to 25, 50, 100, 200 and 400̊A FWHM by Gaussian convolution.
(Each resolution element is sampled by two pixels, so these res-
olutions correspond to 560, 280, 140, 70 and 35 inputs to the
network respectively.) These resolutions are considerably lower
then the 1–5̊A generally used for MK classification. The spectra
were also combined with the transmission curves of the filters
(Table 1) to produce three sets of filter fluxes. Poisson noise
was added to all data sets to simulate signal-to-noise ratios of 5,
10, 20, 50 and 1000 per resolution element. The result is 3537
absolute spectral energy distributions at each of the 40 combi-
nations of resolution and SNR. The absolute flux information
is retained.

It is noted that Kurucz models do not produce highly ac-
curate spectra for all types of stars. This is particularly true at
low Teff as they exclude water opacity (and there are no wa-
ter lines in the line lists). For this reason spectra have not been
calculated below 4000 K. Furthermore, the models lack chro-
mospheres and so do not reproduce features such as emission
in the cores of the CaII H & K absorption lines. For the present
investigation, however, it is not necessary to have highly accu-
rate individual spectra, but spectra which reflect differences of
the appropriate scale and complexity.

5. Spectral parametrization results

As the neural network is a parameter fitting algorithm, it is
essential that its performance is evaluated on an independent
set of data from that on which it is trained. For this purpose,
each of the 40 data sets was randomly split into two halves and
one used for training (1760 spectra) and the other for testing
(1759 spectra).log10Teff (rather thanTeff ) is used as a target
in the networks to reduce the dynamic range of this parameter
and give a better representation of the uncertainties. The input
and output parameters are scaled to have zero mean and unit
standard deviation to prevent ‘saturation’ of the network during
training.

For each data set acommitteeof three identical networks
was trained from different initial random weights. The resul-
tant parameter for any star is then the average from the three
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networks. This helps to reduce the effects of imperfect train-
ing convergence. Each network was trained with a conjugate
gradient algorithm for 10 000 iterations and used weight decay
regularisation to avoid overtraining. More training did not re-
duce the error further. The longest training time (for the largest
input vector) was about one day on a Sun SPARC Enterprise
(no parallelisation of the code). The time to parametrize was of
order10−3 seconds per spectrum.

The precision with which physical parameters can be de-
termined from a stellar spectrum depends not only on the SNR
and resolution, but also on the type of star. For example, it is
more difficult to determine the metallicity of hot stars on ac-
count of the almost complete absence of metal lines. Therefore,
I summarise the performance of each data set for three different
temperature ranges (for alllog g and [M/H]):

1. Teff < 5800 K (stars later than solar – 408 spectra in the test
subset)

2. 5800< Teff < 10 000 (A and F stars – 888 spectra in the
test subset)

3. Teff > 10 000 K (O and B stars – 463 spectra in the test
subset)

The error measure I use is the average absolute error,ε, of each
parameter, i.e. the absolute difference between the network out-
put and the target value averaged over all stars in the test subset
for that temperature range. This error is more robust than the
often-used RMS error because it is less distorted by outliers and
is more characteristic of the majority of the error distribution.
For a Gaussian distribution1σ = 1.25ε, although some of the
error distributions deviate significantly from Gaussian.

The results of the parametrization process are shown in
Figs. 1–3 and tabulated in Tables 2–4. Before interpreting these
results we should consider the limits which the data themselves
place on the performance. First, the network will be unable to
produce errors smaller than the smallest variations in the data
set. If, to take a hypothetical example, the spectra did not change
as the metallicity changed by 1.0 dex, we could not expect the
network to determine [M/H] to much better than 0.5 dex. Sec-
ond, the grid of atmospheric models represents the physical pa-
rameters at a finite sampling, e.g. a constant step size of 0.5 dex
for log g. This sampling does not in itself limit the precision
achievable; it is perfectly possible for the network to legiti-
mately give an error much smaller than the sampling because
the network is minimising a continuous error function and not
just obtaining the best match between a spectrum and a set of
templates. Nonetheless, the network input–output mapping is an
interpolationof the training data, and the more coarsely sam-
pled the parameter grid the harder it is for the network to get a
reliable interpolation. Consequently, while the networkmaybe
able to achieve sub-sampling accuracy, we should not be sur-
prised if it cannot. Thus to avoid over-interpreting these results
we should not compare two errors which are both smaller than
half the sampling level. Theaverage‘half-sampling’ values for
[M/H] and log g are 0.2 and 0.25 respectively, and for logTeff
in the three temperature ranges (cool, intermediate and hot) are
0.01, 0.01 and 0.03 respectively. The implication is that, if the

SNR SNR

Fig. 1.Teff <5800 K. Error in the determination of physical parameters
as a function of SNR for spectra at different resolutions (left column)
and for three sets of filters (right column). The different resolutions
shown in the left column are 25̊A (open triangles, dotted line), 50̊A
(filled squares, dot-dash line), 100Å (filled circles, short dashed line),
200Å (filled triangles, long dashed line) and 400Å (open squares, solid
line). The three filter systems in the right column are Asiago (filled cir-
cles, short dashed line), modified Strömvil (filled squares, dot-dash
line) and GAIA (filled triangles, long dashed line), and ther = 400Å
results are shown again for comparison (open squares, solid line). For
all plots the vertical axis is the mean absolute error,ε, across all spec-
tra in the test subset in this temperature range. Note that the fractional
error in Teff is equal to 2.3 times the error inlog10Teff . The hori-
zontal dotted lines on thelog g and [M/H] plots are the performances
of random (untrained) networks. This has a small dependence on the
resolution (number of inputs), so the minimum values are shown. The
corresponding value forTeff is ε = 0.13. The results are tabulated in
Tables 2–4.

network produces errors smaller than these half-sampling val-
ues (as it does), we cannot know whether the performance is
limited by the network model or by the data themselves. A dis-
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SNR SNR

Fig. 2. Same as Fig. 1 but for 5800< Teff < 10 000.

tinction will only be possible with a more sensitive and finely
sampled grid of atmospheric models.

With the above caveat taken into account, I draw attention
to some interesting features in Figs. 1–3.

1. Good Teff determination is possible with all resolu-
tions/filter systems and SNRs. The larger error inTeff above
10 000 K may be an artifact of the larger half-sampling value
in this region (≥1000 K).

2. Only at high resolution canlog g be determined for the
coolest stars and even then the determination is poor rel-
ative to the hotter stars. This is understandable, at least in
part, because thelog g spectral signature is primarily in the
line widths which are only apparent at high resolution.

3. Although the three filter systems differ somewhat, they give
essentially the same performance as each other.

4. The filter systems (each with 10–15 input parameters) have
similar log g andTeff as ther=400Å spectra (35 inputs).

5. At low SNR, ther=400Å spectra and the filters give poor
[M/H] and very poorlog g determination for all three tem-
perature ranges.

SNR SNR

Fig. 3. Same as Fig. 1 but forTeff > 10 000 K.

6. At high SNR (1000) all resolutions/filter systems appear to
be equally good at determining any of the parameters. Dif-
ferences will probably become apparent with a more sensi-
tive training grid.

7. At higher temperatures the accuracy is more sensitive to
SNR than at lower temperatures.

8. Metallicity determination is more difficult at higher temper-
atures, especially for the filters and low resolution spectra.
This is understandable as at high temperature there are fewer
and weaker metal lines which are only significant at high
SNR and/or resolution.

9. In most cases there is little difference between the perfor-
mances of ther=25, 50 and 100̊A spectra, at least for this
data grid.

6. Summary and discussion

The results demonstrate that a fully automated neural network
can accurately determine the three principal physical parame-
ters from spectroscopic or photometric stellar data, something
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Table 2. [M/H] accuracy. Tabulation of the results in Figs. 1–3. The
resolution is inÅ, except for the three filter systems which are denoted
by their names. SNR is the signal-to-noise ratio (per resolution element
in the case of the spectra).ε1, ε2 andε3 are the mean absolute errors
for the three temperature ranges< 5800, 5800–10 000 and> 10 000 K
respectively.εall is the error across all temperatures (4000–30 000 K).

resolution SNR ε1 ε2 ε3 εall

Asiago 1000 0.227 0.144 0.353 0.218
50 0.229 0.379 0.855 0.464
20 0.293 0.577 0.911 0.593
10 0.334 0.668 0.930 0.653

5 0.478 0.746 0.924 0.726

modified 1000 0.258 0.185 0.343 0.243
Strömvil 50 0.273 0.362 0.852 0.465

20 0.272 0.451 0.932 0.530
10 0.296 0.523 0.923 0.570

5 0.455 0.616 0.933 0.657

GAIA 1000 0.230 0.215 0.382 0.261
50 0.301 0.370 0.818 0.468
20 0.324 0.438 0.907 0.530
10 0.385 0.506 0.920 0.582

5 0.528 0.603 0.996 0.685

400 1000 0.223 0.182 0.292 0.220
50 0.312 0.300 0.578 0.376
20 0.349 0.337 0.735 0.445
10 0.346 0.359 0.808 0.474

5 0.402 0.341 0.908 0.505

200 1000 0.167 0.132 0.222 0.164
50 0.252 0.213 0.313 0.248
20 0.296 0.251 0.454 0.315
10 0.301 0.247 0.524 0.332

5 0.294 0.305 0.803 0.434

100 1000 0.160 0.123 0.199 0.151
50 0.219 0.156 0.267 0.200
20 0.226 0.177 0.302 0.221
10 0.250 0.182 0.338 0.239

5 0.236 0.198 0.568 0.304

50 1000 0.147 0.121 0.161 0.138
50 0.158 0.123 0.186 0.147
20 0.174 0.146 0.223 0.173
10 0.191 0.155 0.232 0.184

5 0.203 0.169 0.279 0.206

25 1000 0.140 0.103 0.132 0.119
50 0.141 0.113 0.160 0.132
20 0.154 0.126 0.172 0.145
10 0.164 0.129 0.191 0.154

5 0.170 0.137 0.214 0.165

which has not previously been demonstrated. Moreover, this
work has used spectra of considerably lower resolution than
has been used before in automated classifiers. Even at low res-
olution (50–100̊A FWHM) and SNR (5–10 per resolution ele-
ment), neural networks can yield good determinations ofTeff
and [M/H], and even forlog g for stars earlier than solar. Still
lower resolutions permit good results provided the SNR is high
enough (≥ 50). That goodTeff can be achieved even at low

Table 3. log g accuracy. See Table 2 for details.

resolution SNR ε1 ε2 ε3 εall

Asiago 1000 0.714 0.272 0.197 0.362
50 0.640 0.218 0.440 0.379
20 0.763 0.325 0.567 0.494
10 0.828 0.375 0.644 0.555

5 0.836 0.604 0.665 0.676

modified 1000 0.728 0.238 0.125 0.330
Strömvil 50 0.770 0.260 0.316 0.400

20 0.801 0.322 0.459 0.475
10 0.829 0.401 0.631 0.565

5 0.849 0.738 0.699 0.755

GAIA 1000 0.778 0.246 0.183 0.361
50 0.792 0.290 0.476 0.461
20 0.807 0.336 0.643 0.530
10 0.826 0.491 0.684 0.623

5 0.849 0.760 0.707 0.768

400 1000 0.785 0.315 0.126 0.374
50 0.811 0.357 0.364 0.465
20 0.793 0.353 0.517 0.498
10 0.813 0.453 0.683 0.597

5 0.829 0.799 0.719 0.785

200 1000 0.689 0.212 0.108 0.295
50 0.797 0.349 0.206 0.414
20 0.797 0.348 0.268 0.431
10 0.800 0.354 0.416 0.474

5 0.834 0.402 0.564 0.545

100 1000 0.750 0.198 0.115 0.304
50 0.770 0.281 0.123 0.353
20 0.635 0.200 0.115 0.279
10 0.783 0.294 0.142 0.367

5 0.719 0.290 0.286 0.388

50 1000 0.708 0.183 0.078 0.277
50 0.546 0.144 0.081 0.221
20 0.542 0.152 0.077 0.223
10 0.607 0.166 0.100 0.251

5 0.554 0.168 0.093 0.238

25 1000 0.665 0.202 0.094 0.281
50 0.446 0.131 0.090 0.193
20 0.462 0.112 0.070 0.182
10 0.520 0.122 0.075 0.202

5 0.489 0.115 0.075 0.191

resolution and SNR is perhaps not surprising when we consider
that the spectra have absolute fluxes, which will be the case with
high precision parallax missions such as GAIA. However, the
more distant objects will have lower precision parallaxes and
hence errors in themeanflux level. But even if we completely
ignore distance information (and flux normalise the spectra),
the shape of the spectrum is still a strong indicator ofTeff : For
example, Bailer-Jones et al. (1998) obtained an MK spectral
type precision of 0.8 subtypes (∆ logTeff=0.010–0.015) across
a wide range of spectral types (B2–M7) using flux normalised
spectra. This is similar to what can be achieved from broad band
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Table 4.Teff accuracy. See Table 2 for details.

resolution SNR ε1 ε2 ε3 εall

Asiago 1000 0.0057 0.0044 0.0094 0.0060
50 0.0032 0.0049 0.0189 0.0081
20 0.0046 0.0045 0.0209 0.0087
10 0.0054 0.0065 0.0219 0.0102

5 0.0055 0.0071 0.0174 0.0093

modified 1000 0.0033 0.0030 0.0102 0.0049
Strömvil 50 0.0050 0.0045 0.0167 0.0077

20 0.0035 0.0058 0.0204 0.0089
10 0.0034 0.0052 0.0239 0.0095

5 0.0066 0.0086 0.0255 0.0124

GAIA 1000 0.0072 0.0070 0.0095 0.0077
50 0.0033 0.0038 0.0142 0.0063
20 0.0037 0.0055 0.0232 0.0096
10 0.0050 0.0070 0.0198 0.0098

5 0.0075 0.0110 0.0319 0.0155

400 1000 0.0077 0.0041 0.0098 0.0064
50 0.0041 0.0038 0.0106 0.0057
20 0.0049 0.0073 0.0187 0.0097
10 0.0046 0.0064 0.0192 0.0093

5 0.0062 0.0091 0.0239 0.0123

200 1000 0.0030 0.0033 0.0067 0.0041
50 0.0047 0.0065 0.0085 0.0066
20 0.0088 0.0102 0.0134 0.0107
10 0.0071 0.0109 0.0221 0.0130

5 0.0063 0.0097 0.0192 0.0114

100 1000 0.0051 0.0042 0.0051 0.0046
50 0.0042 0.0081 0.0071 0.0070
20 0.0035 0.0044 0.0087 0.0053
10 0.0046 0.0049 0.0105 0.0063

5 0.0050 0.0074 0.0178 0.0096

50 1000 0.0030 0.0026 0.0063 0.0036
50 0.0031 0.0031 0.0050 0.0036
20 0.0037 0.0040 0.0081 0.0050
10 0.0030 0.0038 0.0071 0.0045

5 0.0031 0.0043 0.0069 0.0047

25 1000 0.0062 0.0037 0.0063 0.0050
50 0.0034 0.0031 0.0039 0.0034
20 0.0033 0.0031 0.0038 0.0033
10 0.0032 0.0030 0.0045 0.0034

5 0.0034 0.0028 0.0050 0.0035

photometry, implying thatTeff determination only requires very
low resolution.

The good performance of ‘high’ resolution spectroscopy
(25Å) at very low SNR (

√
5 per pixel) was not expected. It

seems to imply that for a given amount of integration time it
may be better to sacrifice SNR for resolution. It is noteworthy
that while the filters provide goodTeff , their ability to determine
[M/H] and especiallylog g is very limited at low SNR.

How do these results compare with classical parametriza-
tion methods? Gray (1992) compiles results showing that with
photometric errors below 0.01 magnitudes, the B−V colour cal-
ibratesTeff to 2–3% (4% for hotter stars) in the absence of red-

dening. Slightly better precision can be obtained from the slope
of the Paschen continuum and size of the Balmer discontinuity.
The latter may also be used to measurelog g to ±0.2 dex. With
spectra at a feẘA resolution over a similar wavelength range
to that used here, Cacciari et al. (1987) obtained uncertainties
in log Teff andlog g of 0.01 and 0.04 respectively. Sinnerstad
(1980) made uvby,β photometric measurements of B stars, and
for uncertainties of 0.005 inβ and of 0.01 in u−b (i.e. SNR
∼ 200), infers errors in logTeff and log g of 0.004 and 0.08
respectively. These are similar to or slightly better than the re-
sults for similar stars in Tables 2–4 (ε3) at the highest resolu-
tions. High resolution (r ≤ 0.1 Å) spectra have generally been
used to determine metallicity, and in a review, Cayrel de Strobel
(1985) notes that metallicity can be determined to±0.07 dex
at SNR=250 (but only±0.2 dex at SNR=50) provided the ef-
fective temperature and gravity are approximately known. At
lower SNR (10–20), Jones et al. (1996) could determine [Fe/H]
to±0.2 dex for G stars using a set of spectroscopic indices mea-
sured at 1̊A resolution in the range 4000–5000Å, again using
a known effective temperature.

More recently, Katz et al. (1998) have used a minimum
distance method to parametrize spectra by finding the clos-
est matching template spectrum. The template grid consisted
of 211 flux calibrated spectra (3900–6800Å, r ' 0.1 Å) with
4000 K≤Teff ≤ 6300 K,−0.29 ≤ [Fe/H]≤ +0.35, andlog g
for dwarfs and giants. Theinternal accuracyof the method for
log Teff , log g and [M/H] was 0.008, 0.28 dex, and 0.16 dex
respectively at SNR=100, and 0.009, 0.29 dex and 0.17 dex at
SNR=10. As expected, their results forlog g are much better
than those in this paper at the similar temperature range (ε1 in
Table 3), presumably due to their much higher resolution. In
contrast, their performance for [M/H] is similar and forTeff
somewhat worse than that in this paper at 500 times lower reso-
lution. Their results also confirm that at high resolution a lower
SNR leads to very little loss in performance. Snider et al. (2000)
trained and tested neural networks on a set of 182 real F, G and K
spectra over the range 3630–4890Å at intermediate resolution
(∼1Å), and achieved 1σ errors in logTeff , log g and [M/H] of
0.015, 0.41 dex and 0.22 dex respectively, based on training and
testing a network with a set of 182 real F, G and K spectra.

When judging the relative values of the different resolu-
tion/SNR combinations in this paper, we must also take account
of their implementation ‘costs’, specifically the relative integra-
tion times required. Usually for a survey, a fixed total amount of
integration time is available for all filters/spectra. In the case of
GAIA – which is continuously rotating – a star moves across a
focal plane covered with a mosaic of CCDs which are clocked
at the rotation rate. The different filters are fixed to different
CCDs, so that as a star moves across the mosaic it is recorded
in different wavelength ranges. Thus fewer and/or broader fil-
ters would achieve a higher SNR than more or narrower filters.
Some filters could be replaced with a slitless spectrograph (e.g.
a prism or grism). This disperses every point on the sky and
thus gives the full integration time for all wavelengths, but at
the expense of increased sky noise and object confusion. These
could be reduced by using one or more dichroics to redirect the
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light to two or more focal planes. (Confusion would be reduced
further with GAIA by the fact that each area of sky is observed at
many different position angles over the mission life.) An alter-
native approach is a set of many medium band filters (∼ 100 for
r=100Å over the complete wavelength range, although omis-
sion of some filters could be achieved). While this avoids the
two principal disadvantages of the slitless spectrograph, the in-
tegration time per wavelength interval is dramatically reduced.

7. Development of a survey parametrization system

The development of a complete survey parametrization system
will require further research, much of which needs to be directed
at taking better account of the true nature of the observational
data. Directions and suggestions for the course of this work are
now given.

7.1. Object selection

Essentially all of the work in the literature on automated classi-
fication deals with preselected objects. In contrast, an unpointed
survey will pick up a whole range of objects, necessitating a fil-
tering system to select the stars. Such a system could make use
of both object morphology and spectral features, and systems
based on neural networks (e.g. Odewahn et al. 1993; Miller &
Coe 1996; Serra-Ricart et al. 1996) and Principal Components
Analysis (Bailer-Jones et al. 1998) have been proposed. Such
a system must be relatively robust and always allow for ‘un-
known’ objects which can be dealt with manually.

7.2. Model training

It will be necessary to have a stellar database for training which
takes better account of the larger range of variation present in
the Galactic stellar population. Ideally, a large set of real spectra
across a wide range of physical parameters should be obtained
for this purpose. Good atmospheric models and synthetic spec-
tra are nonetheless still required for determining their physical
parameters and thus for training the network. There are two
possible approaches to training. The first is to train on synthetic
spectra suitably preprocessed to be in the same form as the ob-
served spectra (e.g. Bailer-Jones et al. 1997). The alternative is
to obtain a representative sample of real spectra with the survey
system, calibrate them, and then use them to train a network.
In theory the latter method gives a better sampling of the true
cosmic variance in the spectra, but of course requires that a rep-
resentative sample is selected from the survey data. This sample
could be improved as the survey progressed. Neural networks
are fast to train and apply, so it is realistic to expect that even
for a database of109 objects the network could be retrained and
applied to the whole database in less than a day.

7.3. Improved stellar models

More advanced model atmospheres are required for a number
of reasons:

1. Teff , [M/H] and log g do not uniquely describe a true spec-
trum. Models sensitive to different abundance ratios and
which include chromospheres (for example) are necessary.

2. Kurucz models assume LTE which is known to break down
in a number of regimes (e.g. for very hot stars).

3. Both the atmospheric models and the line lists lack water
opacity, known to be important for cool stars, thus setting
the current lowerTeff limit of about 4000 K.

4. Yet more advanced models (which include dust) are required
for very cool stars (L and T dwarfs) and brown dwarfs, of
which many will be found by GAIA.

7.4. Reddening

Of particular importance is interstellar extinction (reddening),
especially in deep surveys. The extinction can, in theory, be de-
termined by the network by training it on artificially reddened
synthetic spectra and providing the network with a “reddening”
output parameter (or parameters). This has been demonstrated
on limited data sets by Weaver & Torres-Dodgen (1995) and Gu-
lati et al. (1997b), who determined E(B−V) to within 0.05 and
0.08 magnitudes respectively. The latter made use of 6Å reso-
lution UV spectra (1251–3161̊A). The former used red spectra
(5800–8900̊A) at 15Å resolution and found that the spectral
type and luminosity class classifications did not degrade much
as reddening was added. It is therefore to be expected that the
parametrizations in the present paper will be robust to redden-
ing, particularly as the spectra have a much larger wavelength
coverage. The filter systems proposed for GAIA were of course
designed with interstellar extinction in mind, and a study of its
impact has been carried out (ESA, in preparation). This work
shows that suitable Q parameters (non-linear combinations of
the filter fluxes) used to determine the physical parameters are
largely insensitive to reddening. It also claims that narrow band
filters are not necessary for overcoming reddening. In some parts
of the parameter space, reddening is more problematic (e.g. for
K stars), largely due to a degeneracy between it andTeff and
log g. However, at intermediate and high Galactic latitudes it is
expected that E(B−V) can be determined to within 0.002 mag-
nitudes. Munari (1999) similarly shows that reddening-free in-
dices exist for the Asiago filter system. As a neural network also
forms non-linear combinations of the filter fluxes, it is reason-
able to suppose that it too will be robust to redenning, although
this will be the subject of future work.

7.5. Binary systems

The parametrization model used in a real survey must confront
the fact that most stars are in spatially unresolved multiple
systems. Independent measurement of the physical properties
of each component is desirable and in principle achievable –
when the brightness ratio is large enough – by training the
network with composite spectra. In this case the network model
would need to have multiple sets of outputs to deal with each
component. An alternative approach is to use ‘probabilistic
outputs’ in which the single output for, say,Teff , is replaced
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with a series of outputs in which each value ofTeff (6000,
6250, 6500 etc.) is represented separately. The network then
evaluates the probability that each temperature is present in the
input spectrum. This method is not recommended, however, as
it eliminates the intrinsically continuous nature of the physical
parameters. It would also greatly increase the number of
outputs and hence the number of free parameters (weights) in
the network.

7.6. Incomplete data

Object confusion in a slitless spectrography should not result
in any overlapped spectrum being rejected entirely. Rather, it
would be better to have a parametrization model which is robust
to missing data. This is a major challenge for the feedforward
network models used in this and most other papers on automated
classification, and will presumably require some transformation
of the input spectrum. An analysis of the effect of wavelength
coverage on the parameter determination accuracy is important
because a smaller spectral coverage (orcoverages– it need not
be contiguous) would also reduce this confusion.

Finally, the model should make use of all available data. In
the case of GAIA, this means including the data from the high
resolution spectrograph (8470–8700Å at 0.75Å/pix−1) used
to measure radial velocities. As the inputs to the network need
not be homogenous, there should be no problem incorporating
different types of data.
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