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ABSTRACT

The accuracy of stellar distances inferred purely from parallaxes degrades rapidly with distance.

Proper motion measurements, when combined with some idea of typical velocities, provide indepen-

dent information on stellar distances. Here I build a direction- and distance-dependent model of the

distribution of stellar velocities in the Galaxy, then use this together with parallaxes and proper mo-

tions to infer kinegeometric distances and transverse velocities for stars in Gaia DR3. Using noisy

simulations I assess the performance of the method and compare its accuracy to purely parallax-based

(geometric) distances. Over the whole Gaia catalogue, kinegeometric distances are on average 1.25

times more accurate than geometric ones. This average masks a large variation in the relative perfor-

mance, however. Kinegeometric distances are considerably better than geometric ones beyond several

kpc, for example. On average, kinegeometric distances can be measured to an accuracy of 19% and

velocities (
√
v2α∗ + v2δ ) to 16 km s−1 (median absolute deviations). In Gaia DR3, kinegeometric dis-

tances are smaller than geometric ones on average for distant stars, but the pattern is more complex

in the bulge and disk. With the much more accurate proper motions expected in Gaia DR5, a further

improvement in the distance accuracy by a factor of (only) 1.35 on average is predicted (with kine-

geometric distances still 1.25 times more accurate than geometric ones). The improvement attained

from proper motions is limited by the width of the velocity prior, in a way that the improvement from

better parallaxes is not limited by the width of the distance prior.

Keywords: catalogs – Bayesian statistics – distance indicators – stellar distances – stellar motion –

astrometry – parallax – proper motions

1. INTRODUCTION

Precise parallaxes may be simply inverted to get pre-

cise distance estimates of individual stars. This is not

possible for low precision parallaxes, however, because

the inversion induces a disproportionately large random

error and bias (Bailer-Jones 2015; Luri et al. 2018). Of

the 1.47 billion stars with parallaxes in Gaia Data Re-

lease 3 (GDR3) (Gaia Collaboration et al. 2023), 87%

have a parallax SNRs less than five, and 78% less than

three. Even in the final Gaia data release the parallax

SNRs will only improve by a factor of two for most stars,

leaving 75% still with parallax SNRs less than five (60%

less than three).

A more considered approach than parallax inversion is

therefore required for distance estimation. This has been

framed as a probabilistic inference (Bayesian) prob-

lem in the present series of papers. In the first paper

(Bailer-Jones 2015) I looked at the general problem of

inferring distances from parallaxes, and introduced the

exponentially-decreasing space density (EDSD) prior.

The second paper (Astraatmadja & Bailer-Jones 2016a)

introduced a more sophisticated distance prior based

on a model of the Milky Way. Both this and simpler

isotropic priors were applied in the third paper (As-

traatmadja & Bailer-Jones 2016b) to estimate distances

for all two million stars in GDR1 that had parallaxes.

Paper four (Bailer-Jones et al. 2018) built a direction-

dependent EDSD prior for the whole Galaxy using a

mock Gaia catalogue and used this to infer geometric

distances for all 1.33 billion stars in GDR2 with par-

allaxes. Bailer-Jones et al. (2021), the fifth in the se-

ries, did this again for the higher precision parallaxes in

GeDR3 using a more flexible direction-dependent dis-

tance prior (the generalized gamma distribution). This

paper also extended the method to take advantage of the

Gaia colour and apparent magnitude of each star which,
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together with a model for the colour–absolute magni-

tude diagram (which also varied over the sky), gives in-

formation on distance (as already explored in Astraat-

madja & Bailer-Jones 2016a). These distances, which

we called photogeometric distances, were published for

1.35 billion stars, along with geometric distances for 1.47

billion stars.

Several other authors have published distance estima-

tion methods or catalogues using the Gaia parallaxes.

Some focus on specific objects, such as Wolf-Rayet stars

(Rate & Crowther 2020) or Mira variables (Sanders

2023) or stellar clusters (Cantat-Gaudin et al. 2020; Oli-

vares et al. 2020). Others have performed large scale dis-

tance estimation of broad types of individual stars for

which more general priors must be used. Both Foues-

neau et al. (2022) and Anders et al. (2022) combined

Gaia parallaxes with optical and infrared photometry

from multiple surveys to infer intrinsic stellar proper-

ties, line-of-sight extinctions, and distances for over a

hundred million stars. Andrae et al. (2023) used the

Gaia BP/RP spectra and parallaxes to also estimate

stellar parameters, extinctions, and distances, and pub-

lished these as part of GDR3 for half a billion stars.

Using the publicly-released subset of the GDR3 BP/RP

spectra, Zhang et al. (2023) also estimated stellar pa-

rameters (albeit parallax rather than distance, so the

inversion problem remains). Although conceptually sim-

ilar to the approach used to produce photogeometric

distances in Bailer-Jones et al. (2021), these large-scale

distance estimation projects differ in their methods, and

by using the spectral energy distribution make stronger

assumptions about the stars themselves.

Stellar proper motions can provide further distance

information. A star moving with an angular velocity µ

at distance r has a transverse velocity of

v

km s−1
= k

µ

mas yr−1

r

kpc
with k = 4.740471 . (1)

Assuming stars have a limited range of plausible veloc-

ities, a measurement of the proper motion puts a con-

straint on the plausible distance. A velocity prior quan-

tifies what we mean by “plausible” and inference deliv-

ers a posterior over distance. Alone this would provide a

rather poor distance estimate, but when combined with

a parallax measurement we achieve a kinegeometric dis-

tance estimate that is potentially more accurate than a

purely geometric one. This is of particular interest for

distant stars in Gaia, as these tend to have very low SNR

parallaxes but still relatively accurate proper motions.

I explore this approach in this paper.

The use of proper motions to aid distance estimation

is not new (see Binney & Merrifield 1998, section 2.2 for

an overview). A simple case is to adopt a model of circu-

lar rotation in the Galaxy (a rather narrow prior), and

to estimate the distance directly from the proper mo-

tion (e.g. Reid 2022). Proper motions have long been

used to estimate the mean distance to a group of stars,

often under the name of statistical parallaxes, by mea-

suring the radial velocities as well as the proper motions

(e.g. Strömberg 1936, Hemenway 1975). Schönrich et al.

(2019) adopted a related approach to reduce the bias in

parallax-based distance estimates, and used this to es-

timate distances to 7 million stars with RVs in GDR2.

Zari et al. (2021) used a similar approach to the one in

the present paper to estimate distances to OBA stars

in the Galactic disk from GeDR3. As the target pop-

ulation was narrowly defined, the distance and velocity

priors could be tailored to the expected distribution for

young stars out to 3–4 kpc.

In the present paper I use a direction and distant-

dependent velocity prior derived from a Galaxy model to

estimate kinegeometric distances to a random subset of

stars from the entire GDR3 catalogue (Gaia Collabora-

tion 2022). I compare the results to geometric distances,

and assess the performance of both types of estimate us-

ing a mock catalogue. The kinegeometric method also

provides estimates of the two transverse velocity com-

ponents. Radial velocities are not used: When I refer

to “velocity” in this paper it means the total transverse

velocity, not the 3D velocity. In contrast to the previous

three papers in this series, I do not publish a catalogue

because, as we shall see, the improvements from using

proper motions are substantial only in a limited part of

parameter space.

2. METHOD

The prior is constructed for each HEALpixel (Górski

et al. 2005) independently. As in Bailer-Jones et al.

(2021), I use the equatorial, nested scheme at level 5,

giving 12 288 HEALpixels with an area of 3.36 square

degrees each. All sky plots in this paper are a Mollweide

equal-area projection in Galactic coordinates, with

north up, east increasing to the left, and (l, b) = (0◦, 0◦)

in the centre. They were plotted using healpy (Zonca

et al. 2019) and show grid lines at 45◦ in latitude and

longitude. All other plots, as well as the processing and

analysis, were done in R (r-project.org).

2.1. Distance and transverse velocity posterior

Bailer-Jones et al. (2021) estimated geometric dis-

tances using a prior that varied only with distance (r)

for each HEALpixel (p). The product of this prior and

the likelihood is the unnormalized posterior probability

r-project.org
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distribution function (PDF)

P ∗
g (r | $,σ$, p) = P ($ | r, σ$)P (r | p) . (2)

The likelihood is a Gaussian in parallax ($) with uncer-

tainty σ$, as defined in section 2.2 of Bailer-Jones et al.

(2021). For comparison purposes I below report geo-

metric distances inferred from this posterior. These use

the same input data, parallax zeropoint, and prior as in

Bailer-Jones et al. (2021), so are statistically identical.

Here I introduce the kinegeometric distance, which

uses the proper motions (µα∗, µδ) in addition to the par-

allax. Proper motions are connected to the distance via

equation 1, so to exploit them we must introduce both

a prior on the velocities (vα∗, vδ) and a likelihood on

the proper motions. Combining all this we get the 3D

kinegeometric posterior PDF over distance and velocity

P ∗
kg(r, vα∗, vδ | $,µα∗, µδ,Σ, p) =

P ($,µα∗, µδ | r, vα∗, vδ,Σ)︸ ︷︷ ︸
likelihood

P (r, vα∗, vδ | p)︸ ︷︷ ︸
prior

, (3)

the ∗ symbol indicating that the PDF is unnormalized.

The likelihood is a 3D Gaussian with mean(
1

r
,
vα∗
kr

,
vδ
kr

)
(4)

and covariance Σ, which is the 3×3 variance–covariance

matrix of the parallax and proper motions published in

GDR3 for each star (Lindegren et al. 2021a; Gaia Col-

laboration et al. 2023). The form of the likelihood shows

that the more precise the measured proper motion, the

more precise the estimated value of v/r. As with the

geometric distances, I use the parallax zeropoint of Lin-

degren et al. (2021b). I make no modifications to the

proper motions. The prior will be introduced below.

From the 3D posterior we can estimate the distance and

the transverse velocity components by marginalization.

As I numerically sample the posterior (section 2.3), this

marginalization is trivial.

The main goal of this work is to assess the improve-

ment in distance estimates by using the proper motions

in addition to the parallaxes, but I will also investigate

the velocities estimated by equation 3. Transverse ve-

locities can alternatively be obtained by multiplying the

proper motions by the geometric distance. These I refer

to as geometric velocities, and will compute them for

comparison purposes. I do not consider estimating ve-

locities by dividing the proper motion by the parallax:

this is very biased, and fails completely when the paral-

lax is not positive, which is the case for 24% of sources

with parallaxes in GDR3.

Figure 1. Median of the distance prior in each HEALpixel,
computed from the mock catalogue of Rybizki et al. (2020).

2.2. Velocity prior

The distance–velocity prior in equation 3 can be de-

composed without loss of generality as

P (r, vα∗, vδ | p) = P (vα∗, vδ | r, p) P (r | p) . (5)

For the second term – the distance prior – I adopt the

same one used for the geometric distances. This is de-

scribed in (Bailer-Jones et al. 2021, section 2.3). It was

built from the mock Gaia catalogue of Rybizki et al.

(2020) and is summarized in Figure 1. The first term

in equation 5, the velocity prior, I compute here from

the same mock catalogue, which is based on the Galaxy

model of Robin et al. (2003) plus some later modifica-

tions. This model comprises several Galactic popula-

tions – bulge, thin and thick disks of a range of ages,

stellar halo, dark matter halo, interstellar medium –

with velocities computed self-consistently with the mass
distribution via age–velocity relations. The disk model

includes a warp and flare and the outer bulge is strongly

oblate (a bar). I exclude all star clusters.

Stellar velocity distributions vary considerably with

direction and distance, so a dependence on both is re-

tained. The prior should be a continuous – and ideally

smooth –function of distance and direction. Here I com-

pute it independently for each HEALpixel (direction) so

it is not smooth across HEALpixel boundaries, but it is

smooth in distance. For a given HEALpixel, I investi-

gated how the velocity distribution varied over distance

shells, a shell being defined as the volume between two

spheres of different radii centered on the Sun. With suf-

ficient stars, the 2D distribution in each shell could be

approximated well with a 2D Gaussian.

The task of building a prior then falls to determining

how the mean and variance–covariance of this2D Gaus-
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Figure 2. Velocity prior for HEALpixel 6200 at (l, b) = (285.7◦, 34.8◦). The top left panel shows the positions of the mid points
of the shells and the number of sources in them (on a log scale). The two central panels show the distribution of the velocities
(top vα∗, bottom vδ) for some selected shells, with the colours denoting the shell as in the top left panel. The dashed lines show
the fitted Gaussians. The two right panels show the values of the fitted means (upper) and fitted standard deviations (lower)
for all shells, as red circles for vα∗ and as blue triangles for vδ. The lines show the spline fits, which extend to the outer radius
of the last shell, here 7597 pc. The bottom left panel shows the fitted correlations of the Gaussians in each shell along with its
spline fit, but this is not used (the correlation is set to zero in the model).

sian should vary with distance. Figure 2 supports the

following explanation. I first construct a series of con-

tiguous shells moving outwards from the Sun, defined

such that the volume of each shell is a fixed multiple

λ of the volume of the previous shell. When the outer

radius of the first shell is fixed (its inner radius is zero),

this recurrence relation defines all shells. If stars were

uniformly distributed in volume, then λ = 1 would pro-

duce shells with the same number of stars.

After experimenting to achieve a trade-off between

having sufficiently small shells to capture the variation

of the velocity distribution, yet sufficiently large shells

to allow an accurate Gaussian fit, I selected λ = 1.3 and

an initial outer shell radius of 200 pc. I generate a set

of 45 shells such that the outer radius of the last shell

is 15.3 kpc. Stars beyond this do not contribute to the

prior. Gaia astrometry on more distant stars is poor, so

larger distances are not worth accommodating. Some

HEALpixels at high Galactic latitudes still have too few

stars, so I merge successive shells (starting from the Sun)

to attain at least 200 stars per shell. At higher latitudes

this leads to the outermost shell having an outer radius

less than 15.3 kpc (as there are fewer than 200 stars be-

yond). The smallest outermost radius is 3.2 kpc with a

median of 9.0 kpc. Among the 12 228 HEALpixels, the

number of shells varies from 11 to 45 with a median

value of 36. The number of stars per HEALpixel varies

from 3200 to 3.3 million with a median of 18 thousand.

The top-left panel of Figure 2 shows an example of the

shell structure for one HEALpixel.

Once the shells have been fixed, I compute robust es-

timates1 of the mean and standard deviation of the two

velocities, as well as their correlation coefficient, for the

stars in each shell. I then fit a smoothing spline to each

of the parameters independently as a function of dis-

tance (right panels of Figure 2). The number of degrees

of freedom of these fits is an increasing function of the

number of shells, varying from 3 to 10 with a median of

8. Beyond the outermost radius the Gaussian param-

eters are kept constant at the value at the outermost

radius. As the fit for the standard deviations could go

to very small or even negative values, I force the fit of the

two standard deviations never to drop below 2 km s−1.

The results of this process for a relatively sparse field

at high latitude, where some shells are merged, are

shown in Figure 2. In this particular example the vari-

ation of the correlation with distance is overfit; in other

HEALpixels there is no clear correlation. For this rea-

son I do not use these fits and set the correlation to

be zero for all distances for all HEALpixels; a conser-

1 I use the median and half the difference of the 84th and 16th
percentiles of the distribution.
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Figure 3. As Figure 2 but now for HEALpixel 7593 at HEALpixel 7593 at (l, b) = (29.0◦, 7.7◦).

vative choice, making the prior less informative than it

otherwise would be. Figure 3 summarizes the prior for

a HEALpixel at a lower latitude towards the Galactic

bulge, with many more stars where no shells are merged.

Note the large change in the mean velocities for the most

distant shells.

When building this velocity prior I excluded stars from

the mock catalogue that are fainter than the expected

Gaia magnitude limit for that HEALpixel, as was done

for the distance prior in Bailer-Jones et al. (2021) (see

section 1 of that reference).

I experimented with making the velocity prior a func-

tion of magnitude or colour. For magnitude this ac-

counted for little additional variance. Introducing a

dependence on colour was much harder, because some

HEALpixels show gaps in their colour distribution,

which would necessitate additional modelling assump-

tions to get a continuous prior.

Figure 4 shows how the magnitude of the mean of

the velocity prior varies over the sky for several distance

slices. The velocities of nearby stars are small, but in-

crease at larger distances as we probe the faster orbits

in the central regions of the Galaxy (note the change in

colour scale across the slices). The low velocity regions

near (l, b) = (64◦, 16◦) and (l, b) = (244◦,−16◦) in the

0 kpc distance slice are the approximate solar apex and

antapex directions (respectively), the direction in which

the Sun is moving through the Galaxy.

The inference (equation 3) uses the prior on the two

components of the velocity, not the total transverse ve-

locity. Plots like Figure 4 for the individual components

are less astrophysically informative, however, because

they show features of the (equatorial) coordinate sys-

tem used. An artefact of this is nonetheless visible at the

south equatorial pole (l, b) = (302.9◦,−27.1◦) in some of

the distance slices in Figure 4. This is a projection effect

of the velocity vector onto the rapidly changing vα∗ and

vδ basis vectors at the poles. In principle we should not

see it in the total transverse velocity, but because the

prior is computed over the finite area of the HEALpixel,

the average shows large jumps. The same effect occurs

at the north equatorial pole, (l, b) = (122.9◦,+27.1◦),

but is barely visible. Using a smaller HEALpixel would

mitigate this effect, but create others, and is a limitation

of a discrete prior.

Figure 5 shows how the square root of the sum of

squares of the standard deviations of the velocity prior

varies. This too is not directly used in the inference, but

it gives an idea of the width of the velocity prior, which

influences how precisely distance can be constrained for

a given proper motion (discussed in appendix A). The

velocity constraint tends to be stronger at lower lati-

tudes, as there is less dispersion about the mean ro-

tational velocity of disk stars at a given distance and

longitude. At higher latitudes the dispersion increases

significantly because the more isotropic orbits of halo

stars dominate the tails of the samples. While not im-

mediately visible due to the variable colour scale, the

velocity constraint is generally weaker (larger standard

deviation) at larger distances.
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Figure 4. Variation of the mean of the velocity prior over the Galactic sky at six different distances. The quantity shown
is

√
v2α∗ + v2δ , where vα∗ and vδ are the means of the two components of the velocity prior at the specified distance in each

HEALpixel. In each distance slice the colour bar covers the full range of velocities plotted, and is different for each slice.

2.3. Posterior sampling

I sample the 3D posterior (equation 3) for each star

with an MCMC method (Foreman-Mackey et al. 2013).2

2 As the posterior is Gaussian in velocity for a given distance,
one could instead sample over distance and then compute the
marginal posteriors for the velocity.

The distance is generally strongly correlated with the

velocity components, because for a given proper motion

an increase in the distance can be compensated for by a

decrease in the velocity. Such correlations did not pose

a problem for the sampler, and estimating instead the

true angular velocities – which would not be correlated –

did not confer particular advantages. After some experi-

mentation I found that 60 burn-in iterations followed by
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Figure 5. As Figure 4, but now showing
√
σ2
α∗ + σ2

δ , where σα∗ and σδ are the standard deviations of the two components of
the velocity prior.

200 sampling iterations with 20 walkers gave good con-

vergence. The acceptance rate was around 0.6, and the

sample chains were thinned before parameters were es-

timated. For each parameter I estimate the 16th, 50th,

and 84th percentiles, the median providing the param-

eter estimate and the other two the lower and upper

1σ-like uncertainty estimates.

3. PERFORMANCE ON THE MOCK GDR3

CATALOGUE

To estimate the accuracy of the distance and veloc-

ity estimates, I apply the method to a noisy version of

the mock Gaia catalogue. This is achieved by adding

Gaussian random noise to the parallaxes and proper mo-

tions at the expected noise level in GDR3 (Rybizki et al.

2020). The noise-free version of this same catalogue was
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used to build the priors, so this assessment shows what

the method can achieve before being affected by any

mismatch between the prior and reality.

I analyse the results over the whole sky using two sam-

ples. The constant fraction sample selects 0.8% of the

stars at random from each HEALpixel to give a total

of 10.3 million sources. Like the full Gaia sample, this

is dominated by faint and low-accuracy parallax stars,

many of which lie in the Galactic plane and bulge. While

this is useful for examining trends in performance with

distance and magnitude, it is not as useful for the exam-

ining the variation over the sky. For that purpose I use

the constant number sample, which comprises approxi-

mately 900 sources selected at random per HEALpixel,

for a total of about 11.5 million sources. Both samples

include only stars that are brighter than the prior mag-

nitude limit in each HEALpixel (section 2.2).

3.1. Overall performance

Figure 6 compares the estimated median distances and

velocities against their true values for the constant frac-

tion sample. The top left panel shows the geometric

distance estimated from equation 2. The other panels

show the kinegeometric distance and two velocity com-

ponents (vα∗, vδ) from equation 3. The variations and

differences are discussed in more detail below. Notable

for now, though, is the smaller spread for kinegeomet-

ric distances compared to geometric ones at larger dis-

tances. From now on I will discuss and show results for

the total kinegeometric velocity
√
v2α∗ + v2δ rather than

its individual components. This will be compared with

the total velocity derived from the geometric method,

krgeo
√
µ2
α∗ + µ2

δ .

Performance statistics for the constant fraction sam-

ple are summarized in the top block of Table 1. For

the distances I use the fractional residuals, (estimated-

true)/true, because distance accuracy is a strong func-

tion of distance. For the total velocities I use the actual

residuals, (estimated-true). We see that the residuals

for the two methods are broadly similar, with a slightly

heavier tail to negative residuals. For the distances, the

fractional bias – median of (estimated-true)/true – is

−0.0128 for the geometric distance and −0.0156 for the

kinegeometric distance. For the velocities, the bias –

median of (estimated-true) – is −0.41 km s−1 for the ge-

ometric method and −0.88 km s−1 for the kinegeometric

one. Thus the biases are quite small on average.

The biases, which we can think of as the systematic de-

viation about the identity line in Figure 6, are part of the

estimation error. The total estimation error I character-

ize by the median of the absolute values of the residuals,

more specifically as median(|estimated-true)|/true) for

the distance and median(|estimated-true|) for the ve-

locities. These robust versions of the error I refer to

as the scatter. Note that it includes the bias. For the

distances, the fractional scatters are 0.228 for geometric

distances and 0.185 for kinegeometric distances. For the

velocities, the scatters are 19.8 km s−1 for the geomet-

ric method and 16.0 km s−1 for the kinegeometric one.

These are quite large, but it must be remembered that

most of the stars in the sample are distant and faint.

The middle block of Table 1 shows the performance

statistics on the constant number sample, where we see

much smaller bias and scatter in all cases. This is be-

cause this sample has more stars at higher latitudes that

are generally nearer. This is not as representative, so for

global statistics I report the worse results on the con-

stant number sample elsewhere in this paper. The final

block is for GDR5, discussed in section 5.

The goal of the present paper is to introduce the ki-

negeometric estimates. The above statistics show that

kinegeometric distances are overall more accurate than

the geometric ones by a factor of only 1.25 (the ratio

of the scatters). Within this they have a bias 1.2 times

larger than the geometric estimates, although the aver-

age bias is only −1.5%. In the constant fraction sample,

58% of the stars have a kinegeometric error (scatter)

that is smaller than the geometric error. 27% of stars

have a kinegeometric error which is smaller than the ge-

ometric error by a factor of two or more (compared to

17% the other way around). The is no obvious, narrow

part of parameter space where one estimate is always

better than the other, but there are broad variations

with distance and position, which we now explore.

3.2. Performance as a function of distance

Figure 7 shows how the bias and scatter of the kine-

geometric distance estimate varies as a function of dis-

tance as a density plot, with the orange line indicating

the median at each distance. We see a complex depen-

dence on distance, in part because it is an average over

sources over the whole sky. Compared to the geometric

method (blue line), the kinegeometric bias and scatter

are slightly smaller at most distances. The reason the

geometric distance nonetheless showed a slightly smaller

bias overall (Table 1) is because a large number of stars

lie in the range where the geometric bias is smaller. Be-

yond about 7 kpc the kinegeometric distances are more

accurate. This is the regime where the kinegeometric

distances are most useful.

Figure 8 shows the performance as a function of paral-

lax SNR (defined as the parallax divided by the parallax

uncertainty). The performances of the two methods are

similar in terms of bias, but the kinegeometric distances
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Figure 6. Estimated distances and velocities vs their true values for the constant fraction sample in the mock catalogue. The
colour scale denotes the density of points on a logarithmic scale relative to the maximum in that panel, with densities less than
a thousandth of the peak in white.

Table 1. Median performance for the two distance and two velocity estimates according to four different statistics, computed
on the GDR3 mock catalogue using the two different samples (section 3) in the top and middle blocks. The bottom block shows
the results for simulations at the higher precisions expected in GDR5, discussed in section 5.

geo distance kinegeo distance geo velocity kinegeo velocity

constant fraction sample

bias est-true −20.9 pc −29.9 pc −0.410 km s−1 −0.875 km s−1

scatter | est-true | 977 pc 779 pc 19.8 km s−1 16.0 km s−1

fractional bias (est-true)/true −0.0128 −0.0156 −0.0098 −0.0178

fractional scatter | (est-true)/true | 0.228 0.185 0.238 0.192

constant number sample

bias est-true −0.788 pc −2.53 pc −0.030 km s−1 −0.192 km s−1

scatter | est-true | 199 pc 177 pc 6.14 km s−1 5.68 km s−1

fractional bias (est-true)/true −0.0018 −0.0047 −0.0009 −0.0055

fractional scatter | (est-true)/true | 0.125 0.112 0.128 0.114

constant fraction sample for expected GDR5 astrometric precisions

bias est-true −10.1 pc −18.1 pc −0.229 km s−1 −0.461 km s−1

scatter | est-true | 722 pc 595 pc 14.7 km s−1 11.6 km s−1

fractional bias (est-true)/true −0.0072 −0.0105 −0.0057 −0.0106

fractional scatter | (est-true)/true | 0.168 0.139 0.178 0.139
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Figure 7. Performance of the kinegeometric distance estimate (median of the posterior) as a function of distance for the
constant fraction sample in the mock catalogue. The left panel shows the fractional bias in the estimates, the right panel the
fractional scatter. The colour scale shows the density of stars on a log scale. The solid orange line shows the median bias
or scatter at each distance, the dotted lines are the 5th and 95th percentiles. The blue lines show the same metrics for the
geometric distances for comparison.
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Figure 8. As Figure 7, but now as a function of parallax SNR.
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have lower scatter for low parallax SNR. This is pre-

cisely the region where the proper motions are helping,

because even though the proper motion SNRs are gen-

erally lower too, they are still high enough to provide

additional information on distance. At higher parallax

SNR the differences are small because the parallax dom-

inates, and the priors are less important.

Figure 9 compares the bias and scatter of the two total

velocity estimates as a function of distance. Again we

see a large range of these statistics at a given distance,

as evidence by the dotted lines in these plots. The ve-

locity estimates have similar performances (in both bias

and scatter) for stars with true distances less than about

7 kpc. At larger distance the kinegeometric velocity es-

timates are more accurate, due to the assistance from

the proper motions and velocity prior.

3.3. Performance as a function of direction

We turn look at how the performance varies over the

sky using the constant number sample.

Figure 10 shows the fractional bias and scatter, by

computing the statistic for each star and then taking

the median over each HEALpixel. Looking first at the

upper panels (the bias), we see that both methods tend

to underestimate distances in lines-of-sight in the disk

and bulge. This is because these directions are dom-

inated by distant stars (see Figure 1) which generally

have low parallax SNRs, which in turn introduces a bias

(explained in section B). The kinegeometric estimates

show larger negative biases by up to an average of 13%

in two regions above and below the Galactic centre. This

is related to the large changes in the velocity prior be-

yond a few kpc (see Figure 4). The geometric distance

estimates are less affected.

The scatter plots (bottom row of Figure 10) show a

larger scatter in both distance estimates at low latitudes.

This is a consequence of most stars being at large true

distances, so have low SNR parallaxes. The kinegeomet-

ric distances show a smaller scatter though, because the

proper motions improve the distance accuracy primarily

at low parallax SNR (as already discussed in the context

of Figure 8).

Figure 11 shows the differences between the kinege-

ometric and geometric distance estimates over the sky

(computing the median per HEALpixel of the differences

for each star). At higher Galactic latitudes the estimates

are very similar on average. In the central regions of the

Galaxy the kinegeometric distances are smaller, by up

to 11% on average within a HEALpixel. In the rest of

the Galactic disk the kinegeometric distances are larger

by up to 8% on average.

Figure 12 shows how the performances of the two ve-

locity estimates vary over the sky. The bias patterns

are broadly similar to what we saw with the distances,

especially for the kinegeometric estimates, e.g. the blue

blobs at l ' 0◦ mentioned above. The bias map for the

geometric velocities, however, shows two regions in the

disk with a small but significant overestimate, at around

l = −155◦ and l = 150◦ (the “red cheeks” in the top-left

panel of Figure 12). They are slightly displaced from the

Galactic plane, so are presumably related to the warp of

the disk in the Galaxy model on which the mock cata-

logue is based. They do not appear in the bias map for

kinegeometric distances (top-right panel of Figure 12).

Some structures in these regions are seen in the nearer

slices of the velocity prior (Figure 4), but not in the dis-

tance prior (Figure 1), suggesting that not accounting

for these in the geometric prior is problematic. Natu-

rally, if these features do not exist in the real Galaxy,

the (unknown) biases in the inference in GDR3 could be

different.

The lower panels of Figure 12 show the scatter in the

two velocity estimates, which are similar in pattern, but

slightly larger for geometric velocities. Figure 13 shows

the average differences per HEALpixel between the two

velocity estimates.

3.4. Uncertainty estimates

From the posterior PDF for each star I compute the

16th and 84th percentiles for each parameter, then take

their difference from the median to obtain lower and up-

per 1σ-like uncertainty estimates. Half their difference

gives a single uncertainty estimate for the parameter.

If the residuals (median minus true) have an unbiased

Gaussian distribution, and if the uncertainty is a statis-

tically correct estimate of the residual, then the ratio of

the residual to the uncertainty – the normalized resid-

uals – should have a unit Gaussian distribution. These

are shown in Figure 14. All four distributions have a

mean close to zero and a standard deviation close to

unity, although the distributions for both distance mea-

sures show a slight negative skew. This is not surpris-

ing because we know there is a negative distance bias

for distant, low parallax SNR stars (see appendix B).

But overall this shows that the uncertainty estimates

are good statistical estimates of the true error.

4. RESULTS ON GDR3

1.46 bilion stars in GDR3 have parallaxes and proper

motions. As with the mock catalogue, I apply the ge-

ometric and kinegeometric inference methods to two

randomly-selected subsets: a constant number sam-

ple with 0.8% of all sources (10.3 million sources),
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Figure 9. Performance of the kinegeometric velocity estimate (median of the posterior) as a function of distance for the constant
fraction sample in the mock catalogue. The left panel shows the bias in the estimates, the right panel the scatter. The colour
scale shows the density of stars on a log scale. The solid orange line shows the median bias or scatter at each distance, the
dotted lines the 5th and 95th percentiles. The blue lines show the same metrics for the geometric method (geometric distance
times proper motion).

and a constant fraction sample with 900 sources per

HEALpixel (10.8 million sources), in both cases re-

stricted to sources brighter than the prior magnitude

limit in each HEALpixel (Bailer-Jones et al. 2021, sec-

tion 1) to enable comparison to the estimates on the

mock catalogue in the previous section.

4.1. Distances

Figure 15 shows the median distance per HEALpixel.

The median distance increases to lower Galactic lati-

tudes in both methods, because of the higher density

of stars at larger distances within the disk. The me-

dian distance is smaller in the Galactic plane, however,

because Gaia’s depth is limited by strong interstellar

dust extinction. Many of the patterns we see close to

the plane are due to dust density variations. At high

Galactic latitudes the depth through the disk is small,

and although distant stars in the halo are visible, they

are rare, so the median remains relatively small. The

bulge is quite prominent in both distance estimates as

a larger, approximately circular region of more distant

stars. Close to the Galactic centre we see dust-free lines-

of-sight that extend the median distance to over 7 kpc.

Neither the mock catalogue as we use it nor the prior

contains star clusters, so cluster distances will not be

correct. This is most noticeable for stars in the Large

and Small Magellanic Clouds, which we see have severely

underestimated distances.

The differences between the two distance estimates

are shown in the bottom panel of Figure 15 (median

of differences per star). The largest differences are in

parts of the Galactic plane, parts of the bulge, and in

several star clusters. Most prominent is that the ki-

negeometric distance is smaller in the bulge above and

below the Galactic centre. This is a result of the mea-

sured proper motions combined with the velocities of the

Galaxy prior. In parts of the Galactic plane the kine-

geometric distances are larger, in others the differences

are negligible, and in the northern part of the disk near

the anticentre the kinegeometric distances are smaller.

These patterns are presumably related to the Galac-

tic bar and warp, which unsurprisingly differ between

GDR3 and the Galactic model used to make the prior.

The larger kinegeometric distances in the upper and

lower parts of the bulge was also seen in the results on

the noisy mock data in Figure 11, although it was less

prominent there and also extended through the Galactic

disk. We should not over interpret differences between

Figures 11 and 15, however: they can occur for many

reasons, including differences in the underlying stellar

spatial and velocity distributions or in the extinctions

between the mock catalogue and real Galaxy. The larger

colour bar scale on the difference plot for the GDR3 re-

sults shows that kinegeometric and geometric distances

differ much more in the real inference than they did in

the mock inference, no doubt a result of these differ-

ences.

Figure 16 compares the two distance estimates as

a function of geometric distance. The density plot

and the quantiles (dashed lines) show that there is a

large spread, but the median trend (solid orange line)

is for the kinegeometric distances to be on average

smaller than the geometric ones beyond 6 kpc, by 20%
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Figure 10. Fractional distance residuals – (estimated-true)/true – per HEALpixel for the constant number sample in the mock
catalogue. The top row shows the median fractional residual (the bias); the bottom row shows the median absolute fractional
residual (the scatter). The left column is for geometric estimates, the right column is for kinegeometric estimates. The colour
bars span the full common range in each of the top and bottom rows. The top row uses a bilinear colour bar (separate scales
for negative and positive values): The dominance of red HEALpixels over blue ones at high latitudes is because the positive red
scale extends to smaller values than the negative blue scale; the absolute biases are more or less the same overall.

at 10 kpc.3 This is not true in all lines-of-sight, however,

such as the Galactic centre and parts of the disk, as we

saw in Figure 15. When we consider just the low par-

allax SNR stars (< 3), we see a large difference in the

distance estimates on average also for nearby stars (the

dashed pink line in Figure 16).

We saw in section 3.4 (Figure 14) that the width of

the posterior (the precision) was a good statistical esti-

mate of the actual error. We can therefore compare the

posterior width (the difference between the 84th and

16th percentiles) for the two types of distance estimate

to predict which is more accurate. Using the constant

fraction sample, we find that for 62% of the stars, the

3 One might read the left panel of Figure 7 to suggest we had
the opposite in the mock data, but that plot shows the biases
against the true distance. If we replace true with geometric, in
then looks very similar to Figure 16.

kinegeometric posterior is narrower than the geometric

one. 15% of stars have a kinegeometric posterior that

is less than half the width of the geometric one, com-

pared to just 4% the other way around. This suggests

kinegeometric distances will be more accurate for a sig-

nificant number of stars. Figure 17 plots the ratio of

these posterior widths over the sky, taking the median

over all stars in each HEALpixel. We see that in almost

all parts of the sky – but particularly in the bulge and

disk – the kinegeometric distances are more precise (but

remembering that each HEALpixel is an average over a

large range of distances). We also find that kinegeomet-

ric distances tend to be more precise for lower parallax

SNRs, as we would expect.

4.2. Velocities

Figure 18 shows the median velocity per HEALpixel

inferred by both the geometric method (geometric

distance times proper motion) and the kinegeometric
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Figure 11. Median fractional differences between the ki-
negeometric and geometric distances per HEALpixel (com-
puted on the individual stars), for the constant number sam-
ple in the mock catalogue. The colour bar has white at zero
and diverges on different linear scales to the maximum neg-
ative and positive differences.

method. These are transverse velocities relative to the

solar system barycentre. The largest velocities occur

within about 90◦ in longitude of the Galactic centre,

particularly at low latitudes. This is where we see

mostly disk stars on smaller radius orbits than the

Sun’s. The exception is in the Galactic plane, where

dust extinction means Gaia only sees nearby stars that

are orbiting the Galaxy with low velocities relative to

the Sun. At larger longitudes we see the outer part of

the disk where, due to the flattening of the Galactic

rotation curve, stars are orbiting at speeds more similar

to the Sun’s.

The differences between the two velocity estimates are

shown in the bottom panel of Figure 18. This is broadly

similar to the difference plot obtained from the mock

catalogue results in Figure 13, although the scales are

different. The main difference (other than the absence of

star clusters in the mock results), is around the Galactic

centre: whereas for mock the geometric velocities were

several km s−1 larger on average, in GDR3 the kinegeo-

metric velocities are slightly larger.

5. EXPECTED PERFORMANCE WITH THE

FINAL GAIA DATA RELEASE (GDR5) AND

THE LIMITS OF PROPER MOTIONS

The distance accuracy that this method can attain

is determined by the accuracies of the parallaxes and

proper motions, as well as the width of the distance

and velocity priors. The accuracy of the data will im-

prove in later Gaia data releases. If t is the timespan

of observations, then whereas the parallax accuracy im-

proves as t1/2 on account of the increase in the number

of observations, the proper motion accuracy improves as

t3/2 due to the additional increase in the observational

baseline. This assumes systematic errors do not domi-

nate, which is the case for most stars. GDR3 is based

on 34 months of data, whereas the final release, GDR5,

will be based on about 10.5 years (126 months) of data.

Using these factors, the parallax and proper motion ac-

curacies should therefore increase by factors of 1.9 and

7.1 respectively between GDR3 and GDR5. This sug-

gests that while both the kinegeometric and geometric

distance estimates should be more accurate with GDR5

data, the improvement for the kinegeometric ones might

be larger.

I tested this expectation using the mock catalogue

with similar simulations as before (section 3), but now

scaling down the parallax and proper motion uncertain-

tines by the above factors (1.9 and 7.1 respectively). The

results for the constant fraction sample are shown in the

bottom block of Table 1. Looking first at the geometric

distances – which depend on the parallaxes but not the

proper motions – we see that the fractional bias is de-

creased from GDR3 to GDR5 by a factor of 1.8 and the

fractional scatter is decreased by a factor of 1.35. These

improvements are not as large as the improvement in the

parallaxes. This is expected, because the prior also plays

a role: The distance accuracies for the numerous stars

with very low parallax SNRs (. 1) are only weakly de-

pendent on their parallax SNRs because their distances

are prior-dominated. For such stars, doubling the par-

allax SNR hardly changes their distance estimates and

therefore hardly improves their accuracies.4

For the kinegeometric distances, the fractional bias

and scatter are decreased by factors of 1.55 and 1.35

respectively. Contrary to possible expectations, the ki-

negeometric distances do not improve more than the ge-
ometric distances: On average, at least, the larger im-

provement in the proper motions over the parallaxes has

not helped. The reason is that the proper motion only

provides a distance estimate when combined with an as-

sumed velocity distribution (the prior) via equation 1.

Once the proper motions are sufficiently precise such

that the width of this velocity distribution is the lim-

iting factor in determining the distance precision, then

improving the proper motions further will not help. This

is explained in appendix A. It appears that, on average

at least, this limit has already been achieved in GDR3.

4 Even with weaker priors, such as uniform in distance (or log
distance), doubling the parallax SNR does not double the accuracy
of the distance estimate, because of the nonlinear transformation
between parallax and distance.



Kinegeometric distances and velocities in Gaia DR3 15

Figure 12. Velocity residuals – (estimated-true) – per HEALpixel for the constant number sample in the mock catalogue. The
top row shows the median residual (the bias); the bottom row shows the median absolute residual (the scatter). The left column
is for geometric method (geometric distance times proper motion), the right column is for kinegeometric estimates. The colour
bars span the full common range in each of the top and bottom rows. The top row uses a bilinear colour bar (separate scales
for negative and positive values).

The variation of the distance accuracy (bias and scat-

ter) with distance for GDR5 is shown as the dashed lines

in Figure 19. The profiles are broadly similar to GDR3

(solid lines), but we see that the improvements in the

accuracy vary with distance. Below 2 kpc the scatter in

both the geometric and the kinegeometric distances is

reduced by a factor of nearly two, whereas at around

5 kpc there is little improvement.

For the velocities the situation is similar (Table 1).

The scatter in the geometric velocities is expected to

decrease by a factor of 1.35 times between GDR3 and

GDR5, and by a factor of 1.4 for kinegeometric veloci-

ties. We might have expected much more improvement

in both, because the proper motions improve by a fac-

tor of 7.1. But the mapping from proper motion to ve-

locity depends also on the estimated distance, and the

improvement in this, which is coming mostly from the

parallaxes, is also a limiting factor in the improvement

in the velocities.

I conclude that, in GDR5, kinegeometric distances

and velocities should be about 1.35 times more accurate

than they are in GDR3, when averaged over the entire

Gaia sample in GDR3. These will still be only about

1.25 times more accurate that geometric distances and

velocities. The limited improvement is because the ve-

locity priors are relatively broad.

While it may be worth using proper motions in GDR5

to improve the distance estimates in some regions, this

comes at the cost of building in assumptions on veloci-

ties. If we are happy with this, then a better accuracy

should be obtained by combining parallaxes and proper

motions also with colours, magnitudes, and even spec-

tra.

6. SUMMARY AND CONCLUSIONS

The kinegeometric method introduced in this paper

estimates distances and transverse velocities together in

a 3D posterior PDF using the parallaxes and proper

motions. It uses a direction-dependence distance prior
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Figure 13. Median differences between the kinegeometric
and geometric velocities per HEALpixel (computed on the in-
dividual stars), for the constant number sample in the mock
catalogue. The colour bar has white at zero and diverges on
different linear scales to the maximum negative and positive
differences.
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Figure 14. Normalized residuals for the geometric posterior
distance (top left) and for the three parameters of the kine-
geometric posterior (other panels), computed for all sources
in mock HEALpixel 6200. The smooth red lines show the
unit Gaussian for comparison.

and a direction- and distance-dependent velocity prior.

Geometric distances, in contrast, are obtained from just

the parallaxes and the distance prior.

The performance was assessed on a random subset of

the mock GDR3 catalogue. This showed that on aver-

Figure 15. Median distance per HEALpixel for the constant
number sample in GDR3: Geometric (top) and kinegeomet-
ric (middle). The linear colour bar spans the full common
range. The bottom panel shows the median fractional differ-
ences between these (computed on the individual stars). It
uses a bilinear colour bar with white at zero and diverges on
different linear scales to the maximum negative and positive
differences.
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Figure 16. Variation of the fractional difference between
the kinegeometric and geometric distances with geometric
distance for the constant fraction sample in GDR3. The
colour scale shows the density of stars on a log scale. The
solid orange line shows the median fractional difference, the
dotted lines the 5th and 95th percentiles. The dashed pink
line shows the median fractional difference for just the subset
with parallax SNR less than three.

Figure 17. Median per HEALpixel of the ratio (kine-
geo/geo) of the posterior widths for the constant fraction
sample in GDR3. Numbers less than 1 (in orange) show
where the width of the kinegeometric distance posterior is
narrower than the width of the geometric distance posterior,
and are therefore statistically likely to be more accurate. We
see that this is the case in most parts of the sky, but par-
ticularly in the disk and bulge. The bilinear colour bar with
white at unity and diverges on different linear scales to the
minimum and maximum values.

age, kinegeometric distances are 1.25 times more accu-

rate than geometric ones (Table 1). The median frac-

tional distance residual (scatter) of the kinegeometric

distances is 19% averaged over all sources; averaged over

the sky it is 11%. The main improvement brought by

Figure 18. Median transverse velocity per HEALpixel for
the constant number sample in GDR3: Geometric (top) and
Kinegeometric (middle). The linear colour bar spans the full
common range. The bottom panel shows the median differ-
ences between these (computed on the individual stars). It
uses a bilinear colour bar with white at zero and diverges on
different linear scales to the maximum negative and positive
differences
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Figure 19. Median performance of the geometric (blue) and kinegeometric (orange) distance estimates as a function of distance
for the constant fraction sample in the mock GDR3 (solid) and mock GDR5 (dashed) catalogues. The left panel shows the
fractional bias in the estimates, the right panel the fractional scatter. The solid lines are the same as those in Figure 7.

the proper motions is where the parallax SNR is low

(. 4; Figure 8). There is a considerable spread in per-

formance with position in the Galaxy, however. Close

to the Sun the kinegeometric distance errors are very

small, then increase steadily to 20% at 2 kpc and beyond

(Figure 7). Kinegeometric distances have a low bias at

high Galactic latitudes, but up to several percent in the

bulge and disk, with complex patterns emerging at low

latitudes due to the stellar density and prior variations

(Figure 10). The biggest advantage of kinegeometric

distances over geometric ones is for stars beyond about

7 kpc from the Sun.

The kinegeometric method also provides transverse

velocity estimates. These can be compared to “geomet-

ric” velocities obtained by multiplying the geometric dis-

tances by proper motion. Both approaches have similar

overall performance for stars within 7 kpc, but beyond

that the kinegeometric velocities are considerably more
accurate, including a lower bias (Figure 9).

When applied to real GDR3 data we find that differ-

ences in the two distance estimates depend on direction

and distance. Beyond several kpc, kinegeometric dis-

tances tend to be smaller on average (Figure 16), which

in particular is reflected by two regions in the bulge (Fig-

ure 15). In the disk the picture is more complicated, a

reflection of how the disk kinematics in the prior com-

bine with the measured proper motions to inform the

distance estimates. The precisions (widths) of the pos-

teriors are a statistically good estimate of the accura-

cies (Figure 14), so we can use them to investigate the

expected accuracy of the distance estimators in the ab-

sence of a ground truth. The kinegeometric distances are

more precise than the geometric ones for 62% of stars,

and (on average) over most of the sky (Figure 17).

Overall, we see only a modest average improvement in

distance accuracy when including proper motions. This

conclusion is based on the 34 months of Gaia data in

GDR3. The SNR of the parallaxes and proper mo-

tions are expected to improve in future Gaia data re-

leases, by factors of 1.9 and 7.1 respectively in the final

release (GDR5) assuming this is based on 10.5 years

of data. I find that this will improve the accuracy of

the kinegeometric distances and velocities by a factor of

1.35. The geometric distances improve by a similar fac-

tor, meaning kinegeometric distances are still only about

1.25 times more accurate than geometric ones in GDR5.

The reason for this limited improvement is that proper

motions only constrain distances when combined with

an expected velocity, which we introduce as a distribu-

tion of velocities. If this prior is broad, then even very

precise proper motions do not constrain the distances

much (see appendix A). This is very different from the

situation with parallaxes, in which an increased accu-

racy of the parallax translates directly into an increased

accuracy in the distance (provided the distance is not

prior-dominated). Hence, for many stars in Gaia, the

velocity distributions in the Galaxy are too broad for

even high precision proper motions to provide strong

constraints on distance.
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Figure 20. Demonstration of how the proper motion likelihood (P (µ | r, v), orange) combines with the velocity prior (P (v | r),
blue) to constrain the distance via equation A1, from a measured proper motion of 1 ± 0.25 mas yr−1. This is shown for two
different velocities, 10 and 30 km s−1. The grey curve is the product of the orange and blue curves. The black dashed line is the
integral in equation A1 computed for a continuous range of velocities. None of these functions are probability density functions
in r, but all have been normalized to unit area over the range plotted.
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APPENDIX

A. HOW THE PROPER MOTION AND VELOCITY PRIOR CONSTRAIN DISTANCE

The kinegeometric posterior of equation 3 is a 3D distribution coupling distance and velocity. We can understand

how the proper motion and velocity prior combine to produce distance estimates by considering a simpler version with

just one velocity component and no parallax. In this case the posterior over distance is

P (r | µ) =

∫
P (r, v | µ) dv =

∫
P (µ | r, v)P (r, v)

P (µ)
dv ∝ P (r)

∫
P (µ | r, v)P (v | r) dv . (A1)

We see that the proper motion likelihood constrains the distance only through the integral of its product with the

velocity prior. This is quite different from the parallax, where P (r | $) ∝ P (r)P ($ | r) without any integral.5

Consequently, even if we measure a very precise proper motion, such that the likelihood P (µ | r, v) for some v in

equation A1 is narrow, if the corresponding velocity prior P (v | r) is broader, the contribution to the posterior will

also be broad.

This combination is demonstrated in Figure 20. I use the vδ prior from HEALpixel 7593 (Figure 3) except that

I take the absolute value of the mean of the velocity prior to more conveniently deal with positive values. The

prior (blue curves) is shown for 10 and 30 km s−1. Both velocities show a preference for smaller distances. The two

orange curves are the likelihoods corresponding to these same two velocities assuming a proper motion measurement of

1± 0.25 mas yr−1. 1 mas yr−1 and 10 km s−1 corresponds to distance of 2.1 kpc (and 30 km s−1 to 6.3 kpc; equation 1),

but we see that this low SNR measurement does not constrain the distance much for either velocity. Each grey curve

is the product of the prior and likelihood, and therefore a term under the integral in equation A1 for a given velocity.

If we repeat this for a continuous range of velocities, then the sum of all the resulting grey curves is the integral in

equation A1, which is the unnormalized distance posterior (but omitting a distance prior). This is illustrated in the

5 This follows by replacing µ with $ in equation A1 and then noting that the parallax likelihood is independent of v.
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Figure 21. Demonstration of how the likelihood–prior product, P (µ | r, v)P (v | r), shown as the grey curves, sum to make the
unnormalized distance posterior (black dashed line) via equation A1. The grey curves are shown just for 10 velocities from 5 to
50 km s−1 in steps of 5 km s−1, but some are so flat as to be invisible. In all panels the measured proper motion is 1 mas yr−1.
The top row is for a proper motion SNR of 4, the bottom for 16. The the right column if for a narrower prior with half the
standard deviation of that in the left column. None of the functions shown are probability density functions in r. The grey ones
have been normalized to unit area over the range plotted. The black dashed curve has been scaled to have the same maximum
as the largest grey peak.

top-left panel of Figure 21, where only a few of the grey curves with different velocities are shown, but the resulting

integral (dashed black line) has been computed using a broad, dense grid of velocities. We see from this plot that

even though each contribution to the integral is relatively narrow, their sum, and therefore the posterior, is broad.

Consequently, even if we have higher SNR proper motions – and so narrower likelihoods and thus narrower grey

distributions – the integral is more or less unchanged. This is demonstrated in the bottom left panel of Figure 21,

where the SNR is increased by a factor of four. This is the main point: improving the proper motion SNR does not

necessarily improve the distance accuracy. This is why we expect little improvement in kinegeometric distances from

GDR3 to GDR5 (section 5). If the prior is narrower, then we can get a narrower posterior for given data. This is

illustrated in the right columns of Figure 21, where the standard deviation of the velocity prior has been halved at all

distances. The proper motion likelihoods are unchanged (compared to the panel on the left), but some are now more

suppressed by the prior.

B. RANDOM ERRORS CAUSE BIAS

One might think that, because the priors are built from the mock catalogue, there should be no bias in the results

on the mock catalogue in section 3 (for either distance estimate). This is incorrect for at least three reasons. First,

the mock catalogue used in the performance assessment is noisy. Although the noise is symmetric (Gaussian) in the

parallax, it is not symmetric in the distance due to their nonlinear relation (r ∼ 1/$; see Bailer-Jones 2015). Second,
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the distance and velocity priors are fits, so do not represent all the variances in the mock data. We may in fact not

want a prior tuned exactly to all the details and specific choices of the mock catalogue, because this would be a rather

strong prior. Third, in reflecting the true Galaxy, the distance prior has the bulk of its probability mass within a few

kpc. Stars beyond these distances tend to have low parallax SNRs, i.e. the data are relatively uninformative, so the

prior will tend to pull the inferred distance below the true distance for these stars. This is why we see larger biases at

larger distances in Figure 7. Nearby low parallax SNR stars will tend to have their distances pulled up by the prior for

the same reason, but this is much less common because there are fewer nearby stars, and because nearby stars tend

to have higher parallax SNRs on account of their larger parallaxes and brighter apparent magnitudes.

“Not using a prior” is not a solution to this problem, because a prior is invariably present implicitly. Indeed, if

we just invert a parallax to estimate the distance, the biases are much larger (Bailer-Jones 2015). A prior uniform

in distance or velocity is a poor choice, and much more biased than the present choice: A uniform distance prior is

equivalent to assuming that the stellar number density drops as 1/r2 from the Sun, which is demonstrably wrong. A

uniform velocity distribution relative to the Sun contradicts the existence of the different components of the Galaxy.

Unless one is prepared to use highly tuned priors, low SNR data give low SNR inferences. The only other solution is

to acquire better data.
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