
A Summary of Gaussian Processes

Coryn A.L. Bailer-Jones

Cavendish Laboratory

University of Cambridge

calj@mrao.cam.ac.uk

Introduction

A general prediction problem can be posed as follows. We consider that the variable of interest, t, is
related to the set of measurable variables, x, via some function F , such that

t = F(x) . (1)

Typically, the function F will be unknown. Cast probabilistically, the problem becomes one of evalu-
ating P (tN+1|D,xN+1) given xN+1 and a set of training data, D = {{xN}, tN}.

I shall use the following notation: tN+1 is the single data ‘output’ corresponding to the L inputs
denoted by the vector xN+1 (i.e. the dimensionality of the input space is L). tN+1 is the vector of
the N + 1 values of t, for which the corresponding set of input vectors is the set of vectors {xN+1},
which can be considered as an (N + 1) × L matrix.

The Gaussian Process Model

A graphical summary of how the Gaussian Process model performs predictions is given in Figure 1.

The Gaussian Process model is an attempt to solve this problem by assuming that the set of variables
tN has a joint Gaussian distribution,

P (tN |{xN},CN ,µ) =
1

Z
exp

(

−
1

2
(tN − µ)T C

−1
N (tN − µ)

)

. (2)

Note that the distribution is completely determined by µ and CN . The covariance matrix, CN , has
elements Cij = C(xi,xj). I will consider µ = 0. The use of µ #= 0 will be discussed later. Thus

P (tN |{xN},CN) =
1

ZN
exp

(

−
1

2
t
T
NC

−1
N tN

)

. (3)

Let tN+1 be the value we wish to predict given its corresponding ‘input’ vector xN+1. The joint
distribution of tN+1 is

P (tN+1|{xN}, xN+1,CN+1) =
1

ZN+1
exp

(

−
1

2
t
T
N+1C

−1
N+1tN+1

)

. (4)

The predictive probability distribution for tN+1 is, therefore,

P (tN+1|tN , {xN},xN+1,CN+1) =
P (tN+1|{xN},xN+1,CN+1)

P (tN |{xN},CN)
(5)

=
ZN

ZN+1
exp

[

−
1

2
(tT

N+1C
−1
N+1tN+1 − t

T
NC

−1
N tN)

]

. (6)

1

Coryn Bailer-Jones
1997

Coryn Bailer-Jones

Coryn Bailer-Jones

Coryn Bailer-Jones

at this point

t

x2. make a prediction

P(t)new data point is a Gaussian
probability distribution of a

3. model prescribes that the

t 1. training data

x

t

x

5. standard deviation of P(t)
gives error bars on prediction

the interpolated
function (interpolant)

4. mean of P(t)
is predicted
value of t

Figure 1: Summary of how predictions are made with a Gaussian Process model.

After some matrix manipulation it can be shown that

P (tN+1|tN , {xN},xN+1,CN+1) =
1

Z
exp



−
(tN+1 − t̂N+1)2

2σ2
t̂N+1



 , (7)

where

t̂N+1 = k
T
C

−1
N tN , (8)

σ2
t̂N+1

= k − k
T
C

−1
N k , (9)

and

k = [C(x1,xN+1), C(x2,xN+1), . . . , C(xN ,xN+1)] , (10)

k = C(xN+1,xN+1) (11)

As t̂N+1 is the maximum value of the probability distribution of interest1 it is the predicted value
for tN+1. Thus t̂(x) is the interpolant of the data, i.e. the predicted function. Note that it does not
depend on CN+1. Therefore we only have to invert a single covariance matrix once, namely CN ,
in order to make any number of predictions, tN+1. A diagramatic representation of the relationship
between these vectors and matrices is given in Figure 2.

1Note that even if P (tN) and P (tN+1) are zero-mean, the conditional distribution P (tN+1) is not necessarily zero-
mean.

2

kN+1

N

kN+1
T

k

N+1

N
N+1 C

C
N+1

N

Figure 2: The relationship between the matrices CN and CN+1.

Covariance Function

The elements of the covariance matrix, CN , are denoted Cij . By definition, the covariance between
ti and tj is defined as C(ti, tj) = E [(ti − E [ti])(tj − E [tj])], where E denotes expectation. But to
evaluate expectation values we need to know the probability distribution over t, and it is exactly that
which we are trying to find. Therefore we must parameterize the covariance function, Cij, and infer
these parameters from the training data. Cij is a function of the training input data, {xN}, because
these data determine the correlation between the training data outputs, tN . Thus instead explicity
parameterizing the function, F , and solving for its parameters by some form of regression, the Gaussian
Process approach defines a parameterized probabilistic model for the correlation between different
values of the function. These parameters are then found using standard optimisation techniques.

A suitable form of the covariance function is

Cij = θ1 exp



−
1

2

l=L
∑

l=1

(x(l)
i − x(l)

j)2

r2
l



 + θ2 + θ3δij + Lij , (12)

where x(l)
i is the lth dimension of the ith input vector, xi. The four terms in this equation are now

discussed.

1. The exponential term specifies that we wish to fit a smooth interpolant to the training data.
The form of this term expresses our belief that inputs which are close to each other give rise to
outputs which are close to each other: It achieves this by yielding a relatively large contribution
to Cij when xi and xj are similar. Each input dimension is given a separate ‘length scale’, rl,
which dictates how rapidly the interpolant varies as a function of input xl. If rl is relatively
large, the exponential term will be small, the contribution to Cij will be large, and hence the
function will not vary much as xl is varied. rl is a measure of the length over which xl varies
significantly. We can therefore also consider r−1

l as a measure of the relevance of the lth input
in determining the output. If the function hardly varies at all with one of the inputs (rl large)
we would say that this input has little relevance in determining the output: we could probably
leave out this input and the model could compensate by an adjustment in the value of θ2. Note

3

t

x

Figure 3: The constant term in Cij (θ2) contributes a constant to the interpolating function.

that significance is strictly defined as ∂t/∂xl, and is a function of x. The parameter θ1 gives the
overall scale of variations in the t space.

2. The constant term, θ2, provides for data, tN , with a non-zero mean. Consider a two-dimensional
case. Let

CN =

(

θ2 ρθ2

ρθ2 θ2

)

= θ2

(

1 ρ
ρ 1

)

.

Therefore,

C
−1
N =

1

θ2

1

1 − ρ2

(

1 −ρ
−ρ 1

)

.

As ρ → 1, C
−1
N → ∞, i.e. there is perfect correlation between ti and tj. So, if θ2 is the only term

in Cij , then Cij = const, which means ti = tj or more specifically tN+1 = const. In other words,
the interpolant would be a hyperplane of gradient zero (horizontal line in the one-dimensional
case, see Figure 3). In general, then, the θ2 term adds a constant offset to the interpolant, which
is a similar role to the bias node in neural networks.

Another way of thinking about this is to consider the prediction equation,

t̂N+1 = k
T
C

−1
N tN . (13)

Both C
−1
N and tN depend only upon the training data, so are constant for any predictions and

when we make predictions far from the data, kT = θ2(1, 1, . . . , 1), and hence t̂N+1 = θ2 × const.

3. This is the noise model for the outputs and therefore only occurs in Cij when i = j. In this case
the noise is assumed to be input independent Gaussian noise with variance θ3.

4. Without the Lij term in equation 12, Cij → θ2 for |xi| & |xj |, which would result in ti and tj
assuming the same value. The Lij allows us to model linear trends in the data. The equation of
a plane in ‘real’ (rather than covariance) space can be written

ti =
L

∑

l=1

alx
(l)
i .

4

The covariance of any two such functions, ti and tj is

Cov[ti, tj] = E [(ti − E(ti))(tj − E(tj))] (14)

= E [titj] − titj (15)

= E





∑

l

a2
l x

(l)
i x(l)

j +
∑

m"=n

amanx(m)
i x(n)

j



 −

(

∑

l

alx
(l)
i

) (

∑

l

alx
(l)
j

)

(16)

where E is the expectation operator. In order to evaluate these expectations we need to know
what the prior probability distributions over ti and tj are, which corresponds to needing to know
the priors for the parameters al. If the al are independent then we have

Cov[ti, tj] = E

[

∑

l

a2
l x

(l)
i x(l)

j

]

−

(

∑

l

alx
(l)
i

) (

∑

l

alx
(l)
j

)

.

If we put Gaussian priors on the al with zero mean and variances σl, then we get

Cov[ti, tj] =
∑

l

σ2
l x

(l)
i x(l)

j . (17)

Alternatively, we may want to put a delta function prior on the al, i.e. P (al) = δ(al − αl), in
which case we get

Cov[ti, tj] = '

[

∑

l

α2
l x

(l)
i x(l)

j

]

−

(

∑

l

αlx
(l)
i

) (

∑

l

αlx
(l)
j

)

. (18)

Thus the expression in either equation 17 or equation 18 can be used as the Lij term in equa-
tion 12. When optimizing the model we can then put any priors on the αl (or alternatively on
the σl) that we want.

We can write the linear term in equation 17 as z.b where z(l) = x(l)
i x(l)

j and a = (σ2
1 ,σ

2
2 , . . . ,σ

2
L).

C = z.b is just the equation of a hyperplane with normal b. (This hyperplane is in C =
C(z(1), z(2), . . . , z(L)) space.) Inclusion of this term means that we can model linear trends in
the function t = F(x). If a were negative, then xi & xj implies that Cij would be large and
negative, meaning that ti and tj would be very different. If we did not have this term then
t → const for values of t which deviate greatly from the range in the training data, as was
discussed in point number 1 in this list.

There are other forms of the covariance function which could be used, such as a more complex (input
dependent) noise model. The only restriction is that the covariance matrix be positive definite. From
comparison with neural network methods, the parameters of a Gaussian Process are often referred to
as hyperparameters rather than parameters, and this nomenclature will now be adopted. The reason
for this distinction is that the hyperparameters of a Gaussian Process do not parameterize the function
in the way that the neural network weights do.

I have considered µ = 0. It looks as though equation 2 would then give the most probable value
for tN as tN = 0. However, this assumes that CN is not singular. If we had just the θ2 (constant)
term in Cij, then CN would be singular and we find that tN = a(1, 1, . . . , 1), where a is a constant.
Thus a zero-mean Gaussian Process is completely general provided we have a consant term in the
covariance function. If we use a Gaussian Process with a non-zero mean, µ = θ0(1, 1, . . . , 1), then θ0 is

5

another hyperparameter which must be inferred from the data. We would expect its value to be near
to the mean of the training data. When I have used a non-zero mean hyperparameter, the particular
implementation of a Gaussian Process I used set θ0 to some sensible value and set θ2 to zero. In theory
there is no reason to use a model with both θ0 and θ2, athough there may be numerical reasons.

Hyperparameter Determination

The various hyperparameters of the covariance function are of course not known in advance, and
they must be determined using the training data. From the Bayesian point of view we would like
to integrate over all possible hyperparameters. These integrations can be achieved in principle using
Monte Carlo methods. Alternatively we can take the maximum likelihood approach.

Let Θ be the set of all hyperparameters, Θ = {θ2, θ1, θ3, a1, . . . , aL, r1, . . . , rL}. The likelihood of the
parameters, L(Θ), is

L(Θ) ≡ P (tN |{xN},CN) (19)

≡ P (tN |{xN},Θ, Cf) , (20)

where Cf specifies the form of the covariance function. The maximum likelihood approach is to maxi-
mize L(Θ) to yield the optimum hyperparameters. An improvement over this is to incorporate a prior,
P (Θ), on the hyperparameters. By Bayes’ theorem, the posterior probability of the hyperparameters
given the training data is

P (Θ|tN , {xN}, Cf) =
P (tN |{xN},Θ, Cf)P (Θ|{xN}, Cf)

P (tN |{xN}, Cf)
. (21)

Maximisation of P (Θ|tN , {xN}, Cf) is known as the maximum a posteriori (MAP) approach, which is
a Bayesian version of maximum likelihood estimation. This will be a good approximation to the ‘full’
Bayesian approach (i.e. integrating over all hyperparameters) if the probability mass of the probability
distribution for the hyperparameters is strongly concentrated around the maximum likelihood solution:

P (tN |{xN}, Cf) =
∫

P (tN |{xN},Θ, Cf)P (Θ|{xN }, Cf)dΘ (22)

) P (tN |{xN},ΘMAP , Cf)∆ (23)

where ΘMAP is the most probable value of the hyperparameters evaluated by the MAP method (i.e.
it is the value which maximises P (tN |{xN},Θ, Cf)). ∆ is a ‘volume’ term which takes into account
the finite width of the P (tN |{xN},Θ, Cf) distribution.

In maximizing equation 21, we can consider the denominator as a constant because it is independent
of Θ. The term P (Θ|{xN}, Cf) incorporates our prior knowledge of the hyperparameters. But the
prior, P (Θ), is independent of either {xN} or Cf , so

P (Θ|{xN}, Cf) = P (Θ) . (24)

(Note that the prior appears in equation 23.) In practice it is easier to maximize the logarithm of
(P (Θ|tN , {xN}, Cf):

ln P (Θ|tN , {xN}, Cf) = ln P (tN |{xN},Θ, Cf) + ln P (Θ|{xN}, Cf) (25)

− ln P (tN |{xN}, Cf) . (26)

6

Substituting equation 24 into this and collecting all terms independent of Θ into the term c, the
optimum hyperparameters are given the maximum of

ln P (Θ|tN , {xN}, Cf) = ln P (tN |{xN},Θ, Cf) + ln P (Θ) + c (27)

= ln
[

1

ZN
exp

(

−
1

2
t
T
NC

−1
N tN

)]

+ ln P (Θ) + c (28)

= −
1

2
t
T
NC

−1
N tN −

N

2
ln(2π) −

1

2
ln |CN | + ln P (Θ) + c (29)

where ZN = (2π)N/2
√

|CN |. For conciseness, let L = ln P (Θ|tN , {xN}, Cf). The derivative of this
with respect to one of the hyperparameters, θ, is

∂L

∂θ
= −

1

2
Tr

(

C
−1
N

∂CN

∂θ

)

+
1

2
t
T
NC

−1
N

∂CN

∂θ
C

−1
N tN +

∂ ln P (θ)

∂θ
(30)

where the prior on θ, P (θ) is assumed to be independent of the other priors. The maximum of this
function can be found by standard optimisation procedures (such as gradient descent or conjugate gra-
dients). Note that C

−1
N must be evaluated at each step of the optimisation algorithm. Direct methods

for this include LU decomposition (so-called ‘direct’ and ‘indirect’) and Gauss-Jordan elimination,
both of which are O(N3) methods. If N is large we can use Skilling’s approximate inversion methods
which are O(N2).

7

