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Abstract. I present a novel method for designing filter systems for astrophysical
surveys. The filter system is designed to optimally sample a stellar spectrum such
that its astrophysical parameters (APs: temperature, chemical composition etc.)
can be determined using supervised classification methods. The design problem
is addressed by casting it as an optimization problem: A figure-of-merit (FoM) is
constructed which measures the ability of the filter system to vectorially ‘separate’
stars with different APs; this FoM is then optimized with respect to the parameters
of the filter system using an evolutionary algorithm. The resulting filter systems
are found to be competitive in performance with conventionally designed systems.

1 Astrophysical context

Astrophysics relies on large statistical surveys of astronomical objects for ad-
vancing our understanding of the cosmos. In stellar astrophysics, for example,
by measuring the spectral energy distribution (spectrum) of many different
types of stars across our Galaxy we can gain insight into the formation and
evolution of stars and of the Galaxy itself. Ideally we would obtain high qual-
ity spectra of literally billions of stars, from which we can determine stellar
intrinsic properties, or astrophysical parameters (APs), quantities such as the
temperature, chemical composition and surface gravity. However, for various
technical reasons such detailed spectroscopy is not (yet) possible. Instead,
we must limit ourselves to photometry, that is, coarsely sampling a spectrum
at pre-defined locations with a filter system (for an example see Fig. 4). By
analysing the spectrum of a specific star in detail, we could design a filter
system which is adequate for determining the APs of that type of star to some
desired accuracy. However, large surveys must observe many different types
of stars with a single filter system. Hence this filter system must be some
kind of optimal average system, the design of which is furthermore subject
to numerous instrumental constraints.

A number of upcoming surveys are therefore faced with the difficult ques-
tion of how to define their optimal filter system. Existing systems have been
designed for more specific purposes or for more restricted classes of objects
than is appropriate for these new surveys. The ‘conventional’ approach to
this problem is to manually modify existing systems based on the best of our
astrophysical knowledge. Yet given the numerous conflicting requirements
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placed on the filter system, this is unlikely to be very efficient or even suc-
cessful. Moreover, one would still not known whether a better filter system
could be constructed within the constraints.

In this paper I outline a more systematic approach to the filter design
problem called Heuristic Filter Design (HFD). It is assumed that we have a
set of stellar spectra (the grid) which represents the kind of stars that will be
present in the survey. Their spectra and their APs we want to determine are
known. Each of these APs varies continuously across the grid. The survey in-
strument (which defines the size of mirror, type of detectors etc.) is also fixed
and represents the constraints within which the filter system is optimized:
given a set of filters, this instrument model allows us to calculate the amount
of light (number of photons per unit wavelength) measured for each star in
each filter, plus their expected errors. In some sense, filter design boils down
to the optimal partition of these photons into different filters. HFD is being
used to aid the design of the filter system for a major future astronomical
survey (see my other contribution in these proceedings for one major survey).
More details on the model and its application can be found in Bailer-Jones
(2004).

This filter design problem is closely related to the problem of determining
the J APs of a star from measurements in I filters. This latter problem
is usually solved using supervised multivariate regression methods, that is,
given a set of pre-classified filter data we apply a regression method (such
as a neural network or minimum distance algorithm) to establish the data—
AP mapping (Bailer-Jones 2002). HFD can be seen as a partial inversion of
this problem in which we essentially optimize the data space itself in order
to simplify its topology with respect to the APs. This should increase the
performance of an ideal regression model fitted to these data and/or permit
a simpler model.

2 The optimization model

2.1 Parametrization

A filter is parametrized with three parameters: the central wavelength, ¢, the
half-width at half maximum (HWHM), b, and the fractional integration (or
exposure) time, ¢, i.e. the fraction of the total integration time available per
star which is allocated to this filter. (The instrument model specifies the total
time available per star.) The profile a filter — the fraction of light transmitted
at each wavelength, A — is given by the generalized Gaussian

W] . (1)

This is Gaussian for v = 2, and rectangular for v = co. v = 8 and ¥y = 0.9
are used. For a system of I filters there are therefore 31 parameters which
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Fig. 1. A three-dimensional data (filter) space: p; is the number of photons collected
in filter ¢. For star r in the grid we identify its two nearest neighbours (assuming
the number of APs is two), b and ¢, each of which differs from r in just one of the
APs. The scalar distance to these neighbours defines the AP-gradient and the angle
between their vectors, sin «, the ‘vector separation’. An optimal filter system (for
r) has @ =90° and the AP-gradients large.

must be optimized. The optimization is performed within practical limits (set
by the instrument): ¢ and b are limited such that no part of any filter has a
significant transmission (¥) outside of the wavelength range 2750-11250A.
Additionally, the maximum HWHM is restricted to about 4000 A. ¢ must of
course be 0.0 < t; < 1.0 and be normalized, ) ;t; = 1.0 (i labels a filter).

2.2 Figure-of-merit (fitness)

The I filters of a filter system define an I dimensional data space in which the
measured objects (stars) reside (see Fig. 1). The purpose of the filter system
is to allow us to use these data to determine the J APs per stars. At any point
in this space, each AP will vary in a certain direction (the principal direction),
and at a certain rate, the (scalar) AP-gradient. These we can calculate, or at
least approximate, using the grid of pre-classified stars. In order to be able
to determine the J APs, we clearly need I > J, but we must also ensure (1)
that the AP-gradient is sufficiently large so that, given the signal-to-noise
ratio (SNR) in the data, we can determine the AP to the desired precision,
and (2) that the principal directions for each AP are mutually orthogonal,
or as close to this as possible (otherwise the APs are partially degenerate).
In other words, the goal of the filter system is to maximally ‘separate’ the
different APs for the different stars in a vectorial sense.

These ideas are converted into a figure-or-merit, or fitness, as follows. For
each star, r, in the grid, we find its J nearest neighbours, each of which differs
from 7 in only one of the J APs. The relevant ‘distance’ between r and that
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neighbour differing in AP j (call it n;), is the AP-gradient and is defined as

d’r‘,nj

hr,nj |A¢r,nj| (2)
where d.; is the Euclidean distance between r and n; in SNR units and
Ay, is their difference in AP j. Clearly, the larger h the better we have
separated r and n;. However, we must also minimise the degeneracy between
the principal directions to these J neighbours, in other words, we want angle
a in Fig. 1 to be as close to 90° as possible for all neighbour pairs. Combining
these measures, we see that a useful figure-of-merit of separation is

Trjjt = Brn; hrny, sinogj g 3)

where j and j' label those neighbours which differ from r in APs j and j’
respectively. Note that the above is simply the magnitude of the cross product
between the two vectors. For J APs we have J(J — 1)/2 pairs of neighbours
and thus J(J — 1)/2 terms like eqn 3. Summing these over all stars in the
grid gives the final fitness which is to be maximized

Fk = Z Zxkqﬁjqj' . (4)
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(The actual fitness function is a slight modification which weights and trans-
forms some of the terms to increase its sensitivity: see Bailer-Jones (2004)).

2.3 Evolutionary algorithm

An evolutionary algorithm (EA) is used for the optimization (e.g. Bick &
Schwefel (1993)). A population of 200 individuals is evolved over 200 gen-
erations. An outline of the algorithm is shown in Fig. 2. Natural selection
is emulated using the ‘roulette wheel’ method, i.e. objects are selected with
a probability directly proportional to their fitness (eqn. 4). Elitism is used,
meaning that the F fittest individuals are always selected (and are still sub-
ject to probabilistic selection). In common with many other EA applications,
this is found to improve performance. £ = 10 is used in the results shown,
although E = 50 actually ensures more consistent convergence (independence
of initial conditions). The two search operators are recombination and mu-
tation. Recombination involves swapping a randomly chosen filter between
two individuals. Mutation is implemented by adding a Gaussian random vari-
able, N(0,0.), to the central wavelength, ¢, and multiplying the HWHM, b,
and fractional integration time, ¢, by N(1,05) and N(1,0;) respectively. If a
mutation would take a filter parameter out of bounds, then the mutation is
rejected and that parameter passed on unchanged. The standard deviations
o, o and oy were 500 A, 0.5 and 0.25 respectively, and the mutation proba-
bility per parameter was 0.4. It was found that HFD was quite insensitive to
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Fig. 2. Flow chart of the core aspects of the HFD optimization algorithm. A single
loop represents a single iteration, i.e. the production of one new generation of filter
systems.

fitness

0 50 100 150 200
generation

Fig. 3. Evolution of fitness statistics for a typical HFD run. The lines from top to
bottom denote the maximum, mean, median and minimum fitness in the population.

the mutation probability (unless a very low probability is used, in which case
there is rapid convergence to a poor local maximum) and to the standard
deviations. The absence of recombination also made negligible impact.

3 Application, results and interpretation

HFD is applied to the design of a 10-filter system for determining four APs.
The evolution of the fitness is shown in Fig. 3. The optimization was ter-
minated after 200 iterations. Continuing for ten times as many iterations
or using a population ten times as large produced no significant difference.
The entire optimization was repeated 20 times from different initial (random)
populations. The fittest filter system produced from this is shown in Fig. 4.
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Fig. 4. An optimized filter system produced by HFD. Each of the seven filters is
the plot of () from eqn. 1, but multiplied by the fractional integration time, t.
Overplotted is an example of a stellar spectrum (number of photons vs. wavelength)
arbitrarily scaled.

Inspection of the filter system shows that it consists of only seven filters,
i.e. the optimization has ‘turned off’ three filters by setting their fractional
integration times to zero. This is a recurrent feature. At low SNR it makes
sense, because there is a penalty to be paid for retaining more filters (as
the integration time must then be divided among more filters). It is also
interesting that the system has naturally self-regulated the widths, b, of the
filters. That is, their range is much narrower than the range permitted by
the limits of the optimization. This is encouraging, as on pure SNR grounds
wider filters are better as they collect more photons (Poisson statistics). Yet
beyond a certain width this is detrimental to the separation of the APs. The
fact that the central wavelengths, ¢, cover the whole permitted wavelength
range is expected from what we know about stellar spectra: a wide coverage
gives a good ‘leverage’ for determining small changes in the slope of the
spectrum. However, the lack of filter coverage between 7000 and 80004 is
curious, as is the fact that the wide filter between and 8000A 105004 is
almost equal to the sum of the two filters covering the same range. It could
be that this is measuring small differences between the filters.

Astrophysically these filter systems are quite unconventional in two im-
portant respects.

First, the filters are very broad compared to filters typically used for stellar
parameter estimation. Narrow filters are able to isolate individual spectral
features that we know are sensitive to specific APs. Certainly, in an ideal case,
such narrow filters could better isolate specific signatures. But this implicitly
assumes that we only have to deal with a narrow range of stellar types so
that we could employ such specific filters. In contrast, HFD has been applied
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to a very broad grid of stars, as demanded by the planned surveys. Moreover,
it has been applied to stellar parameters which can be demonstrated to have
a broad band impact on the stellar spectrum (i.e. cause a variation which is
coherent over a large wavelength range). In this case, broad band filters may
be more efficient.

Second, the filters overlap in the wavelength domain. This is sometimes
avoided, as it complicates the interpretation of plots of colour indices (a colour
index is the ratio of the flux obtained in two filters). However, modern surveys
employing many filters produce high dimensional data sets which cannot be
so easily visualised, and probably contain much more information than low
dimensional slices through them. Thus the HFD results might be telling us
that overlapping filters provide a more efficient sampling of stellar spectra
than non-overlapping systems. This is not implausible, also given that each
filter probably has a different relevance for determining each AP for each
star, so the effective number of filters in each case is reduced.

When compared with alternative filter systems proposed for the same
instrument, the HFD system performs much better in terms of overall fitness.
This is largely due to the broad filters and hence larger AP-gradients than
the conventional systems. One might think therefore that the HFD system
suffers in terms of the vector separation, as broad filters may tend to ‘wash
out’ the signature of individual APs. But an analysis of the distribution of the
vector separation terms shows that this is not the case (Bailer-Jones 2004).
Nonetheless, it is found that both the HFD and conventional systems continue
to suffer from some serious limitations, in particular relating to the vector
separation for particular APs. This will be addressed in future developments
of the model.

It is interesting to follow the evolution of the filter system parameters
during the optimization, as shown in Fig. 5. Looking first at the central
wavelength (top left) we see that the filters occupy a fairly broad part of the
parameter space for the first 20 or so iterations (generations). (Filters at the
longest or shortest wavelengths are less common, but this is because very
broad filters — which are present early on — cannot have short or long central
wavelengths due to the wavelength bounds.) After about 20 iterations, some
clear preferred regions appear which continue throughout the optimization
and the region between 6000 and 8000 A is disfavoured throughout. Turning
to the filter width (top right) we see that, although filters with a HWHM up
to 4000 A are permitted, after about 20 iterations the population is largely
purged of filters wider than 2000A. A few dominant regions narrower than
this stand out, but generally a range of widths are represented. The evolution
of the fractional integration time (bottom panel) is quite different. They are
initialized to equal values yet quickly diverge to cover the full range possible.
Note the gap at low ¢. This is because a lower limit of 0.025 was imposed for
practical reasons: filters allocated very little time will be ineffective due to
low SNR. If a mutation takes ¢ below 0.025 then ¢ is set to zero (the thick
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Fig. 5. Evolution of the three filter system parameters for a 10-filter system. At
each generation there are ten points (one per filter) for each of the 200 filter systems
for that filter parameter type, plotted as a grey scale. The corresponding fitness
evolution is shown in Fig. 3 and the best resulting system is that shown in Fig. 4.

line at the bottom). A positive mutation turns a filter on again. A maximum
value of ¢ of 0.4 is also imposed yet we see that HFD essentially self imposes
a more stringent limit of about 0.3. Clearly it is inefficient if any one filter
severely dominates the integration time budget.

4 Conclusions and future work

The Heuristic Filter Design model represents a systematic way for design-
ing photometric filters by casting this as a formal optimization problem.
This makes it amenable to the extensive optimization literature. The cur-
rent model is somewhat rudimentary, yet produces filter systems which are
competitive with other systems designed for the same problem/instrument,
at least according to the figure-of-merit developed here. The filters are some-
what unconventional — broad and overlapping — yet physically we can see
why this may be preferred. Nonetheless, a number of improvements should
be made to the model. First, the fitness function may be an oversimplifica-
tion: it only accounts for linear variations in the data space and ignores any
global degeneracies. It is also prone to ‘overseparate’ some stars or APs at the
expense of others. Part of the problem here is that the fitness is a combination
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of fundamentally different terms with different scales, so the optimization is
dependent on the weighting adopted (not discussed here; see Bailer-Jones
2004). One way around this might be to use multiobjective optimization
methods. In addition, more sophisticated genetic operators for search and
selection could be employed, e.g. to make the search more directed, perhaps
by explicitly incorporating astrophysical information.
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