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Summary

I examine the problem of using a nonparametric model to infer the three-dimensional distribution of dust
in the Galaxy using measurements of the line-of-sight extinction to number of stars. The model employs a
Gaussian process to couple dust densities across space in a covariant sense. We can then estimate, proba-
bilistically, the dust density at any point in space, even where we have no extinction measures. There exists
a straight forward, but impractical, numeric solution. I show that an analytic solution exists.

1 Definitions

• scalar variables are written in lower case normal maths font; a subscript may be used to provide further
information. E.g. µ, ρJ+1.

• scalar sizes of vectors and matrices are written in upper case normal maths font, e.g. J .

• vectors are written in bold upright font (either upper case or lower case); the subscript indicates the
number of elements. E.g. ρJ , AN . These are column vectors.

• matrices are written in upper case upright font, e.g. G; if the matrix is always square, then a subscript
is used to indicate the size of the matrix, e.g. CJ+1.

• the transpose of a vector or matrix is denoted by T, e.g. ρT
J , GT. A transposed vector is a row vector.

• products such as mT
JρJ are scalar products, and products such as kJkT

J are outer products, i.e. with
size J×J .

• E[] and Cov[] are the expectation and covariance operators respectively.

2 Problem setup

We want to determine the 3D spatial distribution of dust given measurements of the line-of-sight extinction
caused by this dust to a number of stars. Specifically, given the extinction toward a number of stars at
different points in the Galaxy, what is our best probabilistic estimate for the dust density at any point in the
Galaxy (not necessarily along the line-of-sight to one of these stars)?

Let the extinction (absorption) measured to star n at position rn be An. A generative model for this is that
extinction is caused by the total absorption of dust along the line of sight

fn ∝
∫ r=rn

r=0
ρ(r) dr (1)
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Figure 1: Two possible general geometries for the dust cells: Cartesian (left) and polar (right). In reality
these are both in three-dimensions.

where ρ(r) is the dust density at position r, and r = |r|. The observer is at the origin. If we were to set up a
parametric model for ρ(r), then we could solve for its parameters based on a set of measurements {An} for
stars with known positions. This is described in Bailer-Jones (2011).

Here we set up instead a nonparametric model. Such a model is free from the strong and/or simplistic
assumptions which must be made in a parametric model, and so is potentially better able to capture the
likely complex distribution of dust in the Galaxy.

In place of a parametric model for ρ(r), we divide 3D space into a large number of fixed cells, the dust
density in each of which is ρn,j . These are unknown. The integral in equation 1 can now be replaced by a
sum

fn = κ
∑
j

gn,jρn,j . (2)

gn,j is a geometric factor which determines the amount of the cell which contributes to the measured extinc-
tion. Typically fn is in magnitudes, ρn,j is mass per unit volume, and gn,j is a volume. κ is a property of
the dust: the magnitude of extinction per unit mass of dust.

We are free to choose the geometry – the size and shape of the cells – according to our needs. Figure 1 shows
two examples, a Cartesian grid and a polar grid. Our choice will effect how we determine the geometric
factors. We will return later to this issue later. We assume that the 3D positions of the stars are known, so
that the geometric factors are uniquely determined by these and must not be inferred.

If the measured extinction is An, and this measurement follows a Gaussian noise model with standard
deviation σn, then the likelihood – the probability of the data given the model parameters – is

P (An|{ρn,j}n) =
1√

2πσn
exp

[
− 1

2σ2n
(An − fn)2

]
(3)

assuming fn has no variance.

Let us suppose that we measure the extinction to N stars. We now adopt a 3D polar grid, so that each
line-of-sight includes a unique set of dust cells which are in no other line-of-sight. Furthermore, we do not
adopt a complete grid: we only define cells along the line-of-sights to the N stars (see Figure 2). Ignoring
the cross-sectional area for now, each line-of-sight is a 1D pencil beam split up into a number of cells, and

2



G  =

Figure 2: Practical dust cell geometry. We only need to define cells along the lines-of-sight to stars for
which we have extinction measurements. These can be considered as long thin pencil beams, as shown on
the left, where the dots mark the centre of the cells (the observer is where the beams join). Right: a sketch
of the corresponding N×J geometric matrix G.

gn,j is determined by the length of the cell along the line-of-sight. For the N different lines-of-sight, let
there be a total of J dust cells. We define G as the N×J matrix with elements κ gn,j . That is, row n of
G contains (κ times) the geometric factors for that line-of-sight. Most of the elements in this row will be
zero, namely those elements which corresponds to dust cells in all the other lines-of-sight. For example, if
N = 100 and we have 10 cells per line-of-sight, then J = 1000, and 990 elements in every row will be zero.
G will always be a sparse matrix. With this particular polar coordinate geometry, it will also only have one
non-zero element per column. It is even be possible to define a single cell for each line of sight, in which
case N = J and G is a diagonal matrix.

If we use ρJ to denote the vector containing ρn,j for all cells in all lines-of-sight, we can now write equa-
tion 2 for all N lines-of-sight as

fN = GρJ . (4)

Writing the N extinction measurements as the vector AN , and the covariance in (AN −GρJ) as VN , then
we can write the likelihood as the N -dimensional Gaussian

P (AN |ρJ) =
1

(2π)N/2|VN |1/2
exp

[
−1

2
(AN −GρJ)TV−1

N (AN −GρJ)

]
. (5)

Let the covariance in AN be the matrix ΣN (which will be diagonal if the extinction measurements are
independent of one another). If the dust model is deterministic (i.e. has no covariance), then VN = ΣN .
But we will consider stochastic models in which the elements of ρJ are covariate, in which case AN must
include the covariance in GρJ also.1 Assuming AN and GρJ are uncorrelated2 we can sum the individual
covariances so that

VN = Cov(AN ) + Cov(GρJ)

= ΣN + E[GρJ(GρJ)T]− (E[GρJ ])2

= ΣN + E[GρJρ
T
JGT]− (E[GρJ ])2 (6)

1Thanks to Rene Andrae for pointing this out.
2This will not be the case if the extinctions and distances have both been derived from the same data, e.g. (spectro)photometric

observations.
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where ρJρ
T
J is an outer product. If G is constant (which requires that we have no distance errors to the

stars), then

E[GρJρ
T
JGT] = GE[ρJρ

T
J ]GT

= G(CJ + E[ρJ ]E[ρT
J ])]GT (7)

where CJ is the covariance of ρJ and we have used the definition of covariance. If E[ρJ ] = 0 (which
corresponds to a zero mean Gaussian Process in the next section), then E[GρJ ] = 0 too so

VN = ΣN + GCJGT . (8)

Note that if ΣN is symmetric then so is VN (because CJ always is).

Problem statement: Our goal is to estimate the dust density ρJ+1 at an arbitrary point rJ+1 in 3D
space, given N measurements of of the extinction, AN , at known positions. Put probabilistically, we
want to find P (ρJ+1|AN ).

While each element of ρJ refers to the average density in the corresponding cell, however large it may be,
ρJ+1 is the density at the point rJ+1. There is no concept of a cell for that point. Only when we calculate
extinctions do we need to introduce the concept of cells.

3 Gaussian process model

In the above formulation J ≥ N and N � 1. A typical problem may involve N = 104 and J = 105. In
order to infer the dust densities, we need to introduce some connection between the lines-of-sight, otherwise
we just have N independent equations like equation 2. We do this using a Gaussian process (e.g. Gibbs
1997. Rasmussen & Williams 2006). This says that the joint distribution of the dust density at any J
different points is a J-dimensional zero mean Gaussian, with a covariance matrix which depends on the
distance between the points, i.e.

P (ρJ) =
1

(2π)J/2|CJ |1/2
exp

[
−1

2
ρT
JC−1

J ρJ

]
(9)

The key aspect of the Gaussian processes is to choose an appropriate covariance function, the function which
determines the elements, ci,j , of the covariance matrix CJ . Here we use

ci,j = θ1 exp

(
−|ri − rj |2

λ2

)
+ θ2 . (10)

This gives the covariance between the dust densities at two points ri and rj . When these refer to the J dust
cells, these coordinates are of the centre of the dust cells. λ is the scale length of the correlation. The above
covariance function simply expresses the physical principle that the closer two points in space are (relative
to λ), the more correlated their dust densities will be. Thus the larger λ, the smoother the variation of dust
density over a fixed length scale. A Gaussian process is a way of specifying a prior on the covariances, as
opposed to specifying the functional form of the dust variation in physical space (which is what we would
normally do with a parametric model). θ1 specifies the overall scale of variations of the dust density. θ2
allows for a non-zero mean of the Gaussian process (which is why we can adopt a zero mean in equation 9).
Here we consider all the θ (hyper)parameters to be fixed, although they can be inferred from the data too.
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The function in equation 10 drops off very rapidly with increasing separation of two points, meaning that
two point separated by much more than λ will hardly influence each other. Yet the covariance is still non-
zero. In order to speed up the inversion of the covariance matrix, it is useful to adopt instead a truncated
covariance function (thereby giving the covariance matrix compact support). In doing so we must ensure
that the matrix remains positive semi-definite. This can be achieved by convolving any symmetric kernel
with itself, for example.

A useful property of the Gaussian processes is that the conditional distribution of the dust density at any
point rJ+1, P (ρJ+1|ρJ), is also Gaussian.

Our goal is to determine at least J+1 parameters from N measurements. This presents no problem for
inference methods, but of course means that the resulting parameters will not be independent. Indeed, the
whole point of the Gaussian process is to introduce a correlation between the dust cells to make the problem
tractable. This Gaussian model of course allows the dust density, ρ, to be negative. This is unphysical, but
can be tolerated. This will be discussed later.

4 Numeric solution

Using the law of marginalization, we can write the quantity of interest as

P (ρJ+1|AN ) =

∫
ρJ

P (ρJ+1,ρJ |AN )dρJ

=

∫
ρJ

P (ρJ+1|ρJ ,AN )P (ρJ |AN ) dρJ

=

∫
ρJ

P (ρJ+1|ρJ)P (ρJ |AN ) dρJ (11)

where in the last step we have used conditional independence of ρJ+1 on AN once ρJ is specified (e.g.
determined from the data). The first term under the integral is given by the Gaussian processes. The second
term is the posterior PDF over the dust densities, given by Bayes theorem from the prior and the likelihood

P (ρJ |AN ) =
P (AN |ρJ)P (ρJ)

P (AN )
(12)

where the denominator, which is independent of ρJ , can be absorbed into a normalization constant. Using
the Monte Carlo principle, we can approximate equation 11 as

P (ρJ+1|AN ) ' 1

K

∑
k

P (ρJ+1|(ρJ)k) (13)

where (ρJ)k indicates a sample of the dust density vector drawn from the posterior PDF given by equation
12. Thus the posterior PDF over ρJ+1 is a sum of 1D Gaussian process prior PDFs, each with a different
value of ρJ drawn from its J-dimensional posterior. Note that this is not, in general, a Gaussian itself.

Performing this Monte Carlo integration will be almost impossible in practice. The posterior is defined in J
dimensions, and for real problems we expect J > 104. It would be extremely hard to draw reliable samples
from this, and/or the sum would have to be over an impossibly large number of samples.
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5 Analytic solution

Using the law of marginalization and then applying Bayes theorem, we can write the quantity of interest as

P (ρJ+1|AN ) =

∫
ρJ

P (ρJ+1,ρJ |AN ) dρJ

=

∫
ρJ

P (ρJ+1,ρJ)P (AN |ρJ+1,ρJ)

P (AN )
dρJ

=
1

P (AN )

∫
ρJ

P (ρJ+1,ρJ)P (AN |ρJ) dρJ (14)

where in the last line we use the fact that AN is independent of ρJ+1 once conditioned on ρJ . The integral
is evaluated over the whole space, i.e. from −∞ to +∞ for each component of ρJ . The term outside the
integral is independent of ρJ+1 so is just part of the normalization constant. The first term under the integral
is the GP prior (equation 9), now in J+1 dimensions. The second term is the likelihood (equation 5). Both
are Gaussians, albeit not in ρJ+1. But their arguments are linear functions of ρJ+1, which suggests that this
integral may have an analytic solution. In the next section we show that it does.

5.1 Analytic solution of the integral

For brevity we write equation 14 as

P (ρJ+1|AN ) =
1

Z

∫
ρJ

e−ψ/2 dρJ (15)

where Z is a normalization constant, and where from equation 9 (with J → J+1) and equation 5

ψ = ρT
J+1C

−1
J+1ρJ+1 + (AN −GρJ)TV−1

N (AN −GρJ)

= ρT
J+1C

−1
J+1ρJ+1 + AT

NV−1
N AN − ρT

JGTV−1
N AN + ρT

JGTV−1
N GρJ −AT

NV−1
N GρJ (16)

Each term in the above equation is a scalar, and transposing a scalar leaves it unchanged. Transposing the
third term:

(ρT
JGTV−1

N AN )T = AT
NV−1

N GρJ (17)

where we have used the fact that VN is symmetric, and therefore its inverse too, so transposing it has no
effect. Thus the third and fifth terms are identical.

In order to perform the integral we need to separate ρJ from ρJ+1 in ρJ+1. We achieve this by partitioning
the vector ρJ+1 and the matrix C−1

J+1 in the following way

ρJ+1 =

[
ρJ
ρJ+1

]
(18)

C−1
J+1 =

[
MJ mJ

mT
J µ

]
(19)
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where MJ is a J×J matrix, mJ is a J×1 vector, and µ is a scalar. Note that these are components of the
inverted matrix, not components of CJ+1 which are then inverted! We can then write

ρT
J+1C

−1
J+1ρJ+1 =

[
ρT
J ρJ+1

] [MJ mJ

mT
J µ

] [
ρJ
ρJ+1

]

=
[
ρT
J ρJ+1

] [ MJρJ + mJρJ+1

mT
JρJ + µρJ+1

]
= ρT

JMJρJ + ρT
JmJρJ+1 + ρJ+1m

T
JρJ + µρ2J+1

= ρT
JMJρJ + 2ρJ+1m

T
JρJ + µρ2J+1 . (20)

Substituting this into equation 16 and gathering together terms gives

ψ = ρT
JMJρJ + ρT

JGTV−1
N GρJ + 2ρJ+1m

T
JρJ − 2AT

NV−1
N GρJ + AT

NV−1
N AN + µρ2J+1

= ρT
J (MJ + GTV−1

N G)ρJ + 2(ρJ+1m
T
J −AT

NV−1
N G)ρJ + (AT

NV−1
N AN + µρ2J+1) (21)

This is a quadratic expression in ρJ . The last term is independent of ρJ so can be taken out of the integral,
allowing us to write equation 15 as

P (ρJ+1|AN ) =
1

Z
exp

[
−1

2
AT
NV−1

N AN

]
exp

[
−1

2
µρ2J+1

] ∫
ρJ

exp

[
−1

2
ρT
JRJρJ + bT

JρJ

]
dρJ (22)

where

RJ = MJ + GTV−1
N G (23)

bT
J = AT

NV−1
N G− ρJ+1m

T
J (24)

bJ = GTV−1
N AN − ρJ+1mJ (25)

The integral, performed over the whole space, is a standard one∫
ρJ

exp

[
−1

2
ρT
JRJρJ + bT

JρJ

]
dρJ =

(2π)J/2

|RJ |1/2
exp

[
1

2
bT
JR−1

J bJ

]
(26)

provided |RJ | > 0. Using this we can write equation 22 as

P (ρJ+1|AN ) =
1

Z
e−φ/2 where

φ = µρ2J+1 − bT
JR−1

J bJ (27)

and we have absorbed all factors which do not depend on ρJ+1 into the normalization constant. Substituting
for bJ this becomes

φ = µρ2J+1 − (AT
NV−1

N G− ρJ+1m
T
J )R−1

J (GTV−1
N AN − ρJ+1mJ)

= −AT
NV−1

N GR−1
J GTV−1

N AN + (µ−mT
JR−1

J mJ)ρ2J+1 +

AT
NV−1

N GR−1
J ρJ+1mJ + ρJ+1m

T
JR−1

J GTV−1
N AN

= −AT
NV−1

N GR−1
J GTV−1

N AN + (µ−mT
JR−1

J mJ)ρ2J+1 + 2AT
NV−1

N GR−1
J mJρJ+1 . (28)
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The first term does not depend on ρJ+1 so can be absorbed into the normalization constant. Putting this into
equation 27 gives us

P (ρJ+1|AN ) =
1

Z
exp

[
−1

2
αρ2J+1 − βρJ+1

]
(29)

where

α = µ−mT
JR−1

J mJ

β = AT
NV−1

N GR−1
J mJ . (30)

By completing the square in the exponent

−1

2
αρ2J+1 − βρJ+1 = −α

2

(
ρJ+1 +

β

α

)2

+
β2

2α
(31)

and taking the term exp(β
2

2α) outside of the integral (where we may absorb it into the) normalization constant,
we see that P (ρJ+1|AN ) is just a Gaussian with mean −β/α and variance 1/α, i.e.

P (ρJ+1|AN ) =

√
α

2π
exp

[
−α

2

(
ρJ+1 +

β

α

)2
]
. (32)

This is our analytic solution.3 In order to calculate the 1D PDF over any single ρJ+1 for position rJ+1, we
must evaluate all of the matrices and vectors for that given point. The terms in the exponent (apart from
ρJ+1) comprise two types. The first depend only on the fixed data. These are AN and G. They therefore
only need to be calculated once for any number of new points. The other terms involve the covariance
function, or more specifically the components of the inverted covariance matrix in equation 19. These are
VN , MJ (which is part of RJ ), mJ , and µ. As they depend on rJ+1 they must be calculated for every new
point. The matrix RJ has to be inverted every time and as this takes time O(J3), this is potentially very
slow. In the next section we will see how we can accelerate this.

It is clear from this that the PDF is only normalizable if α > 0. Presumably it must be, although it is not
obvious that this is enforced by the positive semi-definite property of CJ .4 Numerical errors might cause it
to be negative in practice.

5.2 Accelerating the matrix evaluations via matrix identities

Let us first consider the speed of operations. Multiplying a matrix of size J×J with a vector of size J×1, or
taking the outer product of two such vectors, takes time O(J2). Multiplying two J×J matrices takes time
O(J3) (unless one of them is diagonal, in which case it is O(J2)). A chain of three matrix multiplications
takes time O(2J3), but we will neglect constant numeric factors in these order of magnitude estimates.

3One can check that the covariance elements enter correctly into expressions, and that the dimensions agree (the argument of
the exponent must have no dimensions).

4We can investigate this by referring to the version of our solution in equation 42 in section 5.2. CJ is positive semi-definite
(PSD), and therefore C−1

J is too. It follows that kT
JC

−1
J kJ > 0 provided kJ 6= 0 (which it will be with a covariance matrix with

infinite support). But in general we do not know the size of this compared to k, so we cannot be sure that µ > 0. Any principal
submatrix of a PSD-matrix is also PSD. Therefore MJ and hence M−1

J are PSD. If X is PSD, then XM−1
J X is too. If J=N , then

G is diagonal and all elements are positive, so it is PSD, and hence GM−1
J GT is also PSD. The sum of two PSD matrices is also

PSD. It follows from all of this that when J=N , R−1
J is PSD. Hence mT

JR
−1
J mJ > 0. But this still does not tell us whether it is

smaller than µ and thus whether α > 0.
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Inverting the matrix also takes time O(J3). Multiplying a J×J matrix with a J×N matrix takes time
O(J2N).

We first need to relate the components of the inverted covariance matrix in equation 19 to the components
of the covariance matrix itself, which we partition as

CJ+1 =

[
CJ kJ
kT
J k

]
. (33)

CJ is the J×J covariance matrix involving only the fixed data. kJ is the J×1 vector with elements given by
cj,J+1, i.e. the covariance between the fixed data and the new point. k is the scalar cJ+1,J+1, the covariance
of the new point with itself (i.e. its variance). Recall that each element of the covariance matrix is determined
by the covariance function, such as equation 10.

Given the partitioning defined in equations 19 and 33, a standard result of matrix algebra (e.g. Press et al.
1992) is that the components of the inverted matrix can be written as

MJ = C−1
J + (C−1

J kJ)(k − kT
JC−1

J kJ)−1(kT
JC−1

J ) (34)

mJ = −(C−1
J kJ)(k − kT

JC−1
J kJ)−1 (35)

µ = (k − kT
JC−1

J kJ)−1 . (36)

Some of the parentheses are used to show the common elements (they are otherwise unnecessary, because
matrix multiplication is associative). Defining

hJ = C−1
J kJ (37)

we can write the matrix and vector parts of the inverted covariance matrix as

MJ = C−1
J + µhJh

T
J (38)

mJ = −µhJ (39)

Note that hJhT
J is an outer product, so produces a matrix of size J×J . We now use the matrix inversion

lemma (also known as the Woodbury matrix identity; e.g. Press et al. 1992) to write, from equation 23,

R−1
J = (MJ + GTV−1

N G)−1

= M−1
J −M−1

J GT(VN + GM−1
J GT)−1GM−1

J . (40)

The Sherman–Morrison formula (which is a special case of the matrix inversion lemma) allows us to write

M−1
J = (C−1

J + µhJh
T
J )−1

= CJ − (1 + µhT
JCJhJ)−1µCJhJh

T
JCJ

= CJ − (1 + µkT
JC−1

J kJ)−1µkJk
T
J (41)

where the last step has been obtained by substituting for hJ from equation 37.

9



Thus we can simplify our expressions for α and β in equation 30 using

VN = ΣN +GCJG
T

R−1
J = M−1

J −M−1
J GT(VN + GM−1

J GT)−1GM−1
J

M−1
J = CJ − (1 + µkT

JC−1
J kJ)−1µkJk

T
J

mJ = −µC−1
J kJ

µ = (k − kT
JC−1

J kJ)−1

k = cJ+1,J+1

kJ = (c1,J+1, c2,J+1, . . . , cJ,J+1)
T (42)

C−1
J takes time O(J3) to compute, but must only be done once. If we were to truncate the covariance

function to zero at larger distances, then CJ will be a sparse matrix, a fact which presumably can be exploited
in its inversion.

The following must be calculated for every new point where we want to estimate the dust density. (We ignore
the time taken to invert CJ .) C−1

J kJ takes time O(J2) to compute, and therefore also the argument within
the parentheses for µ. This is a scalar, so inverting it takes time O(0) to compute. Thus both µ and mJ

take time O(J2). The argument in the parentheses in the expressions for M−1
J likewise takes time O(J2) to

compute (and an additional O(0) to invert). mT
JρJ takes time O(J2), and therefore so does M−1

J overall.
In the expression for R−1

J , GM−1
J takes time O(NJ2) to compute, so dominates over the computation of

M−1
J . The term (VN + GM−1

J GT) in R−1
J is an N×N matrix so takes time O(N3) to compute.5 The

multiplication of this with the other terms in that expression take time O(N2J + NJ2 + N3) ∼ O(NJ2)
as J ≥ N . The multiplications in equation 30 take no longer than this, so O(NJ2) is the time required to
compute the exponential argument for each new point by exact methods.

Note that when J > N , the calculation time is in principle dominated by the time required to calculate
GM−1

J , rather than to invert (VN +GM−1
J GT). However, some of these matrices are sparse, and this can be

exploited to accelerate the operations. G will always be sparse in practice. If J=N then it is even diagonal,
in which case computing GM−1

J takes time O(J2). In that case the time to compute equation 30 is O(J3),
and is dominated by the inversion of (VN + GM−1

J GT).

If we use a truncated covariance function, then both CJ and the outer product kJkT
J can be made sparse and

so M−1
J is sparse (but never diagonal). VN is also sparse – it may even be diagonal.

5.3 Fast and approximate matrix operations

When matrices are sparse, knowledge of where the non-zero elements are can be exploited to accelerate
matrix multiplication.

Matrices can be inverted by a number of exact methods, such as Gauss-Jordan elimination. Direct methods
can run into numerical problems when the matrix is ill-conditioned (i.e. when the ratio of the largest to

5If we applied the matrix inversion lemma to this we get

(VN +GM−1
J GT)−1 = V−1

N −V−1
N G(MJ +GTV−1

N G)−1GTV−1
N . (43)

But the term (MJ +GTV−1
N G) takes time O(J3) to invert, which is no faster then before.
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smallest eigenvalues is very large). In that case indirect methods such as LU decomposition or singular
valued decomposition (SVD) are preferred. There also exist approximate methods for inverting matrices. A
common method is the conjugate gradient method (e.g. Press et al. 1992), which takes time O(J2) and also
allows us to estimate the accuracy of the inversion.

6 On-going work and open issues
1. Does equation 26 require RJ to be symmetric? (I think it is anyway: equation 23)

2. We need to ensure that α > 0. It should be guaranteed in principle, but we need to check in practice.

3. Is a calculation time faster than O(NJ2) with exact methods theoretically possible? (I think not.)

4. Can we accelerate the matrix operations (products and inverses) using approximate methods?

5. What numerical error issues do we have, and how do we mitigate them?

6. How shall we set the parameters in the covariance function?

7. What would be an appropriate (and permitted) truncated covariance function, i.e. one with compact
support? Candidates include a truncated polynomial as described on p. 88 of Rasmussen & Williams
(2006), or a cosine kernel suggested in Storkey (1999). Note that if point J + 1 is so far from all data
points such that ci,J+1 = 0 ∀ i, then we cannot solve for that point.

8. With the Gaussian covariance function we could use different scale lengths in the radial and vertical
directions (of the Galactic disk). More generally, if the ISM shows structure on different length scales,
is there a more appropriate (“multi-scale”) covariance function?

9. How shall we determine the geometry? Is there any reason not to use N = J , i.e. one elongated cell
per line-of-sight?

10. How do we deal with the negativity of the dust density? Or, can we (should we) include a positivity
constraint? (Note that the integral used in equation 26 extends to minus infinity.)

11. How shall we introduce the existence of errors in the positions of the N stars, which primarily means
in the distances? In principle we would need to introduce (co)variances for both the position vectors,
rj , as well as the geometric factors, gn,j , which means the elements of G. In the former case we
might be able to accommodate this by replacing λ2 in equation 10 with something like λ2 + δ2ri + δ2rj .
Introducing uncertainty into G looks like it would be difficult; or at least would sacrifice some of the
simplicity of the model. But it may be important, because distance uncertainties are likely to be as
large as extinction uncertainties, on which the likelihood is based.
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