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ABSTRACT

The terrestrial fossil record shows a significant variation in the extinction and origination rates of
species during the past half billion years. Numerous studies have claimed an association between
this variation and the motion of the Sun around the Galaxy, invoking the modulation of cosmic rays,
gamma rays and comet impact frequency as a cause of this biodiversity variation. However, some of
these studies exhibit methodological problems, or were based on coarse assumptions (such as a strict
periodicity of the solar orbit). Here we investigate this link in more detail, using a model of the Galaxy
to reconstruct the solar orbit and thus a predictive model of the temporal variation of the extinction
rate due to astronomical mechanisms. We compare these predictions as well as those of various
reference models with paleontological data. Our approach involves Bayesian model comparison, which
takes into account the uncertainties in the paleontological data as well as the distribution of solar
orbits consistent with the uncertainties in the astronomical data. We find that various versions of
the orbital model are not favored beyond simpler reference models. In particular, the distribution
of mass extinction events can be explained just as well by a uniform random distribution as by any
other model tested. Although our negative results on the orbital model are robust to changes in the
Galaxy model, the Sun’s coordinates and the errors in the data, we also find that it would be very
difficult to positively identify the orbital model even if it were the true one. (In contrast, we do find
evidence against simpler periodic models.) Thus while we cannot rule out there being some connection
between solar motion and biodiversity variations on the Earth, we conclude that it is difficult to give
convincing positive conclusions of such a connection using current data.
Keywords: Earth — Galaxy: kinematics and dynamics — methods: statistical — astrobiology

1. INTRODUCTION

1.1. Background

Over the course of Earth’s history, evolution has pro-
duced a wide variety of life. This is particularly apparent
from around 550Myr ago – the start of the Phanero-
zoic eon – when hard-shelled animals first appeared and
were preserved in the fossil record. Since then we ob-
serve a general increase in the diversity of life, but with
significant variation superimposed (Sepkoski et al. 2002;
Rohde & Muller 2005; Alroy et al. 2008). The largest
and most rapid decreases in biodiversity – defined here
are the number of genera extant at any one time – are
referred to as mass extinctions.
The cause of these variations in biodiversity in general,

and mass extinctions in particular, have been the sub-
ject of intense study and speculation for over a century.
Many mechanisms have been proposed for the observed
variation, which we can place into four groups.
First, the variations are the result of inter-species in-

teractions. Species compete for limited resources, and
as one species evolves to compete in this struggle for
survival, so other species will evolve too. This idea
has been referred to as the “Red Queen hypothesis”
(Van Valen 1973; Benton 2009) (in reference to the Red
Queen’s race in Lewis Carroll’s Through the Looking
Glass, where Alice must run just to keep still). Recent
ecological studies indicate that the interaction between
species can minimize competition and enhance biodiver-
sity (George & Hao 2009), although it is not obvious that
these biotic factors are the main cause of large-scale pat-
terns of biodiversity (Benton 2009; Alroy 2008).

Second, the environment changes with time, and
species will evolve in response to this. This ideas is some-
times called the “Court Jester hypothesis” (Barnosky
2001; Benton 2009). Some of these (abiotic) geological
changes are relatively slow, such as plate tectonics, at-
mospheric composition, global climate (Sigurdsson 1988;
Crowley & North 1988; Wignall 2001; Mart́ı & Ernst
2005; Feulner 2009; Wignall et al. 2009). Others may be
more rapid. Large-scale volcanism, for example, would
inject dust, sulfate aerosols and carbon dioxide into the
atmosphere, resulting in a short-term global cooling, re-
duced photosynthesis, long periods of acid rain, and re-
sulting ultimately in a long-term global warming (on a
timescale of 105 years) (Mart́ı & Ernst 2005).
Third, extraterrestrial mechanisms could be involved,

either through a direct impact on life or by chang-
ing the terrestrial climate. Variations in the Earth’s
orbit (mostly its eccentricity) over ten to one hun-
dred thousand year time scales are responsible for
the ice ages (Hays et al. 1976; Muller 2000). Ex-
traterrestrial mechanisms on longer time scales could
also play a role. These include solar variability
(Shaviv 2003; Lockwood 2005; Lockwood & Frohlich
2007), asteroid or comet impacts (Shoemaker 1983;
Alvarez et al. 1980; Glen 1994), cosmic rays (Shaviv
2005; Sloan & Wolfendale 2008), supernovae (SNe)
and gamma-ray burst (GRBs) (Ellis & Schramm 1995;
Melott & Thomas 2008; Domainko et al. 2013) (for a re-
view see Bailer-Jones (2009)). For example, cosmic rays
might influence the Earth’s climate if they play a signif-
icant role in cloud formation (through the formation of
cloud condensation nuclei) (Carslaw et al. 2002; Kirkby
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2007). Secondary muons resulting from cosmic rays – as
well as high energy gamma rays from SNe – could kill or-
ganisms directly or damage their DNA (Thorsett 1995;
Scalo & Wheeler 2002; Atri & Melott 2012).
Finally, the apparent variation may be, in part, the

result of uneven preservation and sampling bias (Raup
1972; Alroy 1996; Peters 2005). Fossilization is relatively
rare and some animals are more likely to be preserved
than others. Furthermore, the degree of preservation of
marine speices (more common in the fossil record) de-
pends on the amount of continental outcrop available at
any time, and this depends on the sea level (Hallam 1989;
Holland 2012). The number of species or genera living at
any one time is not observed but must be reconstructed
from the times at which species appear and disappear,
which implies some kind of sampling or modelling. This
can introduce a bias, although it may be diminished
to some degree by various techniques (Alroy et al. 2001;
Alroy 2010).
These four types of cause of biodiversity variation are

not mutually exclusive. They probably all acted at some
point, and will also have interacted. For example, an as-
teroid impact could release so much carbon dioxide that
long-term global warming has the biggest impact on bio-
diversity. Alternatively, a cool period would lower sea
levels, leaving less continental shelf for the preservation
of marine fossils, even though biodiversity itself may be
unchanged.
Given the limited geological record, untangling the rel-

evance of these different causes in most individual cases
is difficult, if not impossible. More promising might be
an attempt to identify the overall, long-term significance
of these potential causes. The goal of this article is to do
that for extraterrestrial phenomena.
Many of the astronomical mechanisms mentioned

above are ultimately caused by the presence of nearby
stars. Stars turn supernovae, the source of gamma rays,
and their remnants are a major source of cosmic rays
(Koyama et al. 1995). Stars perturb the Oort cloud,
the main source of comets in the inner solar system
(Rampino & Stothers 1984; Garćıa-Sánchez et al. 2001).
Broadly speaking, when the Sun is in regions of higher
stellar density, it is more exposed to extraterrestrial
mechanisms of biodiversity change. In its orbit around
the Galaxy (once every 200–250Myr or so), the Sun’s
environment changes. For example, it oscillates about
the Galactic plane with a (quasi) period of 50–75Myr
(Bahcall & Bahcall 1985), and in doing so moves through
regions of more intense star formation activity in the
Galactic plane. This is particularly true if the Sun crosses
spiral arms (Gies & Helsel 2005; Leitch & Vasisht 1998),
which it may do every 100-200Myr or so.
Such changes in the solar environment have been

used as the basis for many claims of a causal
connection between the solar motion and mass ex-
tinctions and/or climate change. Typically, au-
thors have identified a periodicity in the fossil
record and then connected this to a plausible peri-
odicity in the solar motion (Alvarez & Muller 1984;
Raup & Sepkoski 1984; Davis et al. 1984; Muller 1988;
Shaviv 2003; Rohde & Muller 2005; Melott & Bambach
2010; Melott et al. 2012). These comparisons are fraught
with problems, however, some of which remained un-
mentioned by the authors. The first is the fact that

the solar motion and past environment are poorly con-
strained by the astronomical data, so a wide range of
plausible periods are permissible (Overholt et al. 2009;
Mishurov & Acharova 2011), yet the coincident one is
naturally chosen. Second comes the fact that the so-
lar motion is not strictly periodic even under the best
assumptions. Third, many of these studies have not per-
formed a careful model comparison. Typically they iden-
tify the best fitting period assuming the periodic model
to be true, but fail to accept that a non-periodic model
might explain the data even better(Kitchell & Pena
1984; Stigler & Wagner 1987). In some cases a sig-
nificance test is introduced to exclude a specific noise
model, but this is often misinterpreted, and the result-
ing significance overestimated. The reader is referred
to Bailer-Jones (2009) for an in-depth review and refer-
ences.

1.2. Overview

Here we attempt a more systematic assessment of the
possible role of the solar orbit in modulating extrater-
restrial extinction mechanisms. Our approach is new
in a number of respects, because we: (1) do a numer-
ical reconstruction of the solar orbit (rather than just
assuming it to be periodic); (2) take into account the ob-
servational uncertainties in that reconstruction; (3) use
models which predict the variation of probability of ex-
tinction with time (rather than assuming that extinc-
tion events occur deterministically, for instance); (4) do
proper model comparison (rather than using p-values in
an over-simplified significance test); (5) compare not only
the orbital model with the fossil record but also numerous
reference (non-orbital) models, such as periodic, quasi-
periodic, trend, periodic with constant background, etc.
Our method is as follows. Adopting a model for the

distribution of mass in the Galaxy, we reconstruct the so-
lar orbit over the past 550Myr by integrating the Sun’s
trajectory back in time from the current phase space co-
ordinates (position and velocity). This gives us a time
series of how the stellar density in the vicinity of the Sun
has varied over the Phanerozoic. We then assume that
this density is approximately proportional to the terres-
trial extinction probability (per unit time). That is, we
adopt a non-specific kill mechanism linking the solar mo-
tion to terrestrial biodiveristy. This is naturally a strong
and rather simple assumption, but it should be empha-
sized that we are interested in the overall plausibility of
extraterrestrial phenomena rather than trying to identify
a specific cause of individual extinction events. The re-
sulting time series is then compared to several different
reconstructions of the biodiversity record.
A significant source of uncertainty in the reconstructed

solar orbit is the current phase space coordinates (or “ini-
tial” conditions). We therefore sample over these to build
up a set of (thousands of) possible solar orbits, and com-
pare each of these with the data. The comparison is
done by calculating the likelihood of the data for each
orbit. Rather than finding the single most likely orbit,
we calculate the average likelihood over all orbits. This is
important, because it properly takes into account the un-
certainties (whereas selecting the single most likely orbit
would ignore them entirely). Indeed, these initial con-
ditions can be considered as the six parameters of this
orbital model (for a fixed Galactic mass distribution).
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We are, therefore, averaging the likelihood for this model
over the prior plausibility of each of its parameters. This
average – or marginal – likelihood is often called the “ev-
idence”. This is just the standard, Bayesian approach
to model assessment, which avoids the various flaws of
hypothesis testing (Jeffreys 1961; Winkler 1972; MacKay
2003), but unfortunately it has seen little use in this field
of research.
The next step is to compare this evidence with that

calculated for various reference models (sometimes called
“noise” or “background” models, depending on the con-
text). One such model is a purely sinusoidal model,
parameterized by an amplitude, period and phase. We
generate a large number of realizations of the model for
different combinations of the parameters, calculate the
likelihood of the data for each, and average the results.
This averaging plays the crucial role of accommodating
the complexity of the model. A complex model with lots
of parameters can often be made to fit an arbitrary data
set well. That is, it will give a high maximum likelihood.
But this does not make it a good model, precisely be-
cause we know that it could have been made to fit any
data set well! Such models are highly tuned, so while the
maximum likelihood fit may be very good, a small per-
turbation of the parameters results in poor predictions.
Unless supported by the data very well, such models are
less plausible. A simpler model, in contrast, may not
give such an optimal fit, but it is typically more robust to
small perturbations of the model parameters or the data,
so gives good fit over a wider portion of the parameter
space. The model evidence embodies and quantifies this
trade-off, which is why it – rather than the maximum
likelihood – should be used to compare models.
We have selected four data sets for our study. The first

two are compilations of the variation of extinction rate
over time, from Rohde & Muller (2005) and Alroy et al.
(2008). In the latter we use the extinction rate stan-
dardized to remove the sampling bias. Both report a
magnitude as a function of time. The second two data
sets just record the time of mass extinction events. Here
we take the times of the “big 5” mass extinctions and 18
mass extinctions identified by Bambach (2006) based on
Sepkoski’s earlier work (Sepkoski & Raup 1986). Each
mass extinction is represented as a (normalized) Gaus-
sian on the time axis, the mean representing the best
estimate of the date of the event and the standard devia-
tion the uncertainty. We refer to these as “discrete” data
sets, as they just list the discrete dates at which events
occur (we do not use any magnitude information). The
two rate data sets we therefore refer to as “continuous”
(even though in practice the rates are also recorded at
discrete time points).
The paper is arranged as follows. We first introduce

the data sets. In Section 3 we explain the modelling ap-
proach, how we calculate the likelihoods and evidence,
and how we compare the models. In Section 4 we de-
scribe how we reconstructed the solar orbit, and also
quantify the degree of periodicity typically present (as
a strict periodicity has often been assumed in the past).
In Section 5 we calculate and compare the evidences for
the various models and data sets and test the sensitivity
of the results to the model parameters and uncertainties
in the data. We conclude in Section 6.

2. PALEONTOLOGICAL DATA

We adopt four data sets: two discrete time series (se-
quence of time points with age uncertainties) giving the
dates of mass extinctions, and two continuous time series
giving the smoothed and normalized extinction rate as a
function of time.

2.1. Discrete data sets

Sepkoski and others have identified five extinction
events to be “mass extinctions” (Sepkoski & Raup 1986),
often referred to as the “big five”. Other studies have
identified different candidates for these, or have identi-
fied a “big N” for some other value of N . For example,
Bambach et al. identify three mass extinction events as
being globally distinct (Bambach et al. 2004). Here we
adopt a set of 18 mass extinction events (or B18) se-
lected by Bambach (2006) using an updated Sepkoski
genus-level database. They are consistently identifiable
in different biodiversity data sets and when using differ-
ent tabulation methods. The second of our discrete data
sets is the “big five” as identified from among the B18.
Other choices of events are of course possible and our
results will, in general, depend on this choice (although
as we’ll see the results are rather consistent).
The times and durations of the events are listed in Ta-

ble 1. The time, τ , is the mid-point between the start
age and end age of the substage in which the extinction
occurred, and the substage duration, d, is the difference
between these. The geological record does not resolve the
extinction event, so the extinction presumably took place
more rapidly than this substage duration. In that case τ
is our best estimate of the true (but unknown) time, t, at
which the extinction occurred, and d is a measure of our
uncertainty in this estimate. Uncertainty is represented
by probability, so we interpret an “event” as the proba-
bility distribution P (τ |t, d). This is the probability that
we would measure the event time as τ , given t and d. We
could represent this as a rectangular (“top-hat”) distri-
bution of mean t and width d, but this assigns exactly
zero probability outside the substage duration, which im-
plies certainty of the start and end ages. Even though
their (relative) ages have uncertanties which are less the
event duration, we nonetheless accommodate some un-
certainty in these start and end ages by considering each
event to be a Gaussian distribution with mean t, and
standard deviation σ equal to the standard deviation of
the rectangular distribution, which is σ = d/

√
12. This

Gaussian distribution is broader than the corresponding
rectangular distribution. Note that the intensity of the
mass extinction is not taken into account. A Gaussian is
normalized, so its peak value is determined by its stan-
dard deviation (Figure 1).1

2.2. Continuous data sets

The discrete data sets are naturally biased in that they
only select periods of high extinction rate. It may well
be that extraterrestrial phenomena are only relevant in

1 One might think that a more natural interpretation of an event
is P (t|τ, d), the probability that the true event occurs at t given
the measurements. But here we are considering the measurement
model (or noise model), that is, given some true time of the event,
what possible times might we measure, the discrepancy arising on
account of the finite precision of our measurement process.
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Figure 1. The four data sets used in this study. The top row shows the discrete data sets: the B5 (left) and B18 (right) mass extinction
events. These can be interpreted as the extinction probability density function (PDF), which is proportional to the extinction fraction per
unit time (i.e. a rate). The bottom row shows the continuous data sets, which give the extinction rate: RM (left) and A08 (right).

Table 1
The B18 mass extinction events, with the B5 shown in bold. BP

= before present.

Time (τ) / Myr BP Substage duration (d) / Myr

3.565 3.53
35.550 3.30
66.775 2.55

94.515 2.03
146.825 2.65
182.800 7.00
203.750 8.30

252.400 2.80

262.950 5.10
324.325 4.15
361.600 4.80
376.300 3.60

386.925 3.25
445.465 3.53

489.350 2.10
495.725 2.15
499.950 2.10
519.875 2.75

causing (or contributing to) mass extinctions, but a priori
it is natural to ask how the overall extinction rate varies.
The extinction rate, E(t), is the fraction of genera which
go extinct in a stratigraphic substage divided by its du-
ration. This is directly proportional to the variation of
extinction probability per unit time. For one of our ex-
tinction rate data sets we use the linearized and inter-
polated data set constructed by Rohde & Muller (2005)
as reported in Bambach (2006). We denote this RM.
The other data set is the “three-timer” extinction rate
from the Paleobiology database2 (Alroy et al. 2008). The
data are binned into 48 intervals averaging 11Myr in du-
ration. The counts are derived from 281491 occurrences
of 18 541 genera within 42 627 fossil collections. We use
the data set processed using their subsampling method in
order to reduce the sampling bias, and denote this A08.
Both data sets are reported as lists of extinction rates at
specific times, {rj , τj}. These two continuous data sets
are plotted in the lower row of Figure 1.

2 paleodb.org
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3. DATA MODELLING METHOD

3.1. Overview of Bayesian model comparison

The goal of this work is to compare how well vari-
ous models predict the paleontological data sets. We do
this by calculating, for a given data set, the Bayesian
evidence for each model. If the models are equally prob-
able a priori, then the one with the highest evidence is
the best predictor of the data. This does not exclude
the possibility that there exists a better model which we
have not yet tested. But it at least allows us to conclude
that the lower evidence models are neither appropriate
nor sufficient explanations of the phenomenon. (Indeed,
we never assume a model is “true”, just better than the
alternatives.)
The modelling approach is described in full by

Bailer-Jones (2011a,b), so will only be outlined here.
Let D denote the paleontolgical time series, and M the
model. Examples of M are the orbital model or the peri-
odic model. Each model has a set of parameters, θ. The
likelihood of the model, P (D|θ,M), is the probability of
obtaining D from model M with its parameters set to
some specific values of θ. Normally we do not know the
exact values of these parameters, and the data – being
noisy and imperfectly fit by the model – do not determine
them exactly either. We therefore average the likelihood
over all possible values of θ, weighting each by how plau-
sible that value of θ is. This weighted average is the ev-
idence. This weighting is given by the prior probability
distribution, P (θ|M). In the case of the orbital model,
where θ is the current phase space coordinates of the
Sun, P (θ|M) is determined by the the observational un-
certainties in these measurements. Mathematically the
evidence is

P (D|M) =

∫

θ

P (D|θ,M)P (θ|M)dθ . (1)

It gives the probability of getting the data from that the
model, regardless of the specific values of the parameters,
i.e. it measures how well the model explains the data.
The absolute value of the evidence is not of interest, so
we generally deal with the ratio of two evidences for two
models, known as the Bayes factor. The evidence is a
far better measure of the suitability of a model than is
the p-value (Jeffreys 1961; Kass & Raftery 1995; Winkler
1972; MacKay 2003; Bailer-Jones 2009).
It is worth stressing again that, by averaging over the

parameters, the evidence is not sensitive to model com-
plexity per se. This is in contrast to the likelihood at
the best fitting parameters (the maximum likelihood):
a more complex (flexible) model will always fit the data
better, and so will always deliver a higher maximum like-
lihood. The evidence reports the average likelihood, so
it will only increase if the extra complexity gives a net
benefit over the plausible parameter space. The model
complexity does not then need to be considered sepa-
rately in some ad hoc way.

3.2. The likelihood

3.2.1. Discrete data sets

As explained in Section 2.1, each event in a discrete
data set can be considered as a Gaussian distribution.
For event j this gives the probability that the mass ex-

tinction occurs at time τj , given that the true time is tj
and the uncertainty in our measurement is σj . That is,

P (τj |σj , tj) =
1√
2πσj

e−(τj−tj)
2/2σ2

j . (2)

In order to compare the measurement of this event with
the predictions of a model we calculate the likelihood.
This is given by an integral over the unknown true time

P (τj |σj , θ,M)=

∫

tj

P (τj |σj , tj , θ,M)P (tj |σj , θ,M)dtj

=

∫

tj

P (τj |σj , tj)P (tj |θ,M)dtj . (3)

The first term in the integral – Eqn. 2 – is sometimes
called the measurement model. The second term is the
prediction of the time series model, i.e. the probability
(per unit time) that a mass extinction occurs at time tj .
Our time series models are, therefore, stochastic in the
sense that they do not attempt to predict when mass
extinctions occurred, but rather how the probability of
occurrence of a mass extinction varies over time. Note
that the likelihood is just measuring the degree of overlap
between the data and the model predictions, averaged
over all time.
Eqn. 3 gives the likelihood for a single event. Assuming

all events are measured independently3, then the likeli-
hood for all the data is just the product of the event
likelihoods

P (D|θ,M) =
∏

j

P (τj |σj , θ,M) (4)

where D = {τj}. For the sake of the likelihood and
evidence calculation we do not consider the {σj} as data,
although they are of course measured. That is because
D is defined as just those quantities which are predicted
by the measurement model.

3.2.2. Continuous data sets

Mathematically the likelihood for the continuous data
is very similar as in the discrete case, but the interpreta-
tion is different.
Consider the measurement model, P (τ |σ, t), in Eqn. 2

(we consider just one event so drop the subscript j). We
have interpreted this as the probability of a discrete ex-
tinction event being measured at τ , but we could equiv-
alently interpret it as the probability density (i.e. proba-
bility per unit time) of extinction at time τ . Now, rather
than characterizing the probability density as a Gaussian
with mean t and standard deviation σ, we could consider
an arbitrary function, characterized by a series of top-hat
functions, {pi} (a histogram), each top-hat characterized
by a center ti, height ri, and width δi. We can then re-
place P (τ |σ, t) with ∑

i pi(τ |ti, δi) where

pi(τ |ti, δi) =
{

riwhen ti − δi/2 < τ < ti + δi/2
0 otherwise .

(5)

3 More precisely, the events are assumed independent given the
model and its parameters. This is probably a reasonable assump-
tion given that the events are distributed quite sparsely over the
Phanerozoic, and that the separations between them are generally
much longer than their substage durations.
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We now see that

lim
δi→0

∑

i

pi(τ |ti, δi) = E(t) (6)

i.e. we get a continuous function of the variation of the
extinction probability with time t (as τ and t become
equivalent in this limit). The likelihood is then

P (D|θ,M) =

∫

t

E(t)P (t|θ,M)dt . (7)

In practice we characterizeE(t) using the extinction rate,
rj , tabulated at each time τj , which is equivalent to
assuming that extinction rate is constant over the sub-
stage (or that we have zero uncertainties on the measured
times).
We can actually apply this interpretation to the dis-

crete data sets too. In both cases, the data provide the
variation of extinction probability (per unit time) as a
function of time, or something proportional to that. The
proportionality constant is irrelevant, because we keep
the data fixed when comparing different models using
the evidence.

3.3. Time series models

The time series models appear in the equation for the
likelihood in the form P (t|θ,M), i.e. the extinction prob-
ability (per unit time) as a function of time predicted by
model M at parameters θ. It is important to realize that
this probability density function (PDF) over t is normal-
ized, i.e. integrates over all time to unity. This is key
to model comparison, because a model which assigns a
lot of probability to extinctions at some particular time
must necessarily assign lower probability elsewhere. This
follows because we are not trying to model the absolute
value of the extinction rate, but just its relative varia-
tions.
In addition to specifying the functional form of the

models we must also specify the prior probability distri-
bution of the model parameters, P (θ|M). This describes
our prior knowledge of the relative probability of differ-
ent parameter settings. For example, given the time scale
in the data, we are not interested in models with time
scales less than a few million years or more than a few
hundred million years. It is often difficult to be precise
about priors, and the evidence and therefore Bayes fac-
tors often depend on the choice. The choice of prior must
therefore be considered part of the model (e.g. “periodic
model with permissible periods between 10 and 100Myr”
is distinct from “periodic model with permissible periods
between 50 and 60Myr”). We investigate the sensitivity
of the results to changes in the prior in Section 5.3. Ex-
cept for the orbital model, we adopt a uniform prior over
all model parameters over the range specified in Table 3.
Table 2 summarizes the functional form of the models,

which are now briefly described. Figure 2 plots examples
of some of these models. The range of the data is taken
to be 0–550Myr BP.

Uniform: Constant extinction PDF over the range of
the data. This has no parameters.

RB/RNB: Random model in which a set of N times
are drawn at random from a uniform distribution
extending over the range of the data. A Gaussian
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Figure 2. Time series models. The black line shows the PNB
model with T =100Myr, β = 0. The red line shows the QPM
model with T =100Myr, β = 0, AQ = 0.5 and TQ =200Myr; The
blue line shows the SP model with λ =50Myr and t0 =200Myr.

with standard deviation σ =10Myr is assigned to
each of these, and then a constant B added be-
fore normalizing. This is the RB model. The RNB
(“random no background”) model is just the spe-
cial case of B = 0, which produces a model which
is similar to our discrete data. In practice we fix
N and B and calculate the evidence by averaging
over a large number of realizations of the model.
Specifically, when modelling the B5 and B18 data
sets we fix B = 0, and N = 5, 18 respectively.

PB/PNB: Periodic model of period T and phase β
(model PNB). There is no amplitude parameter be-
cause the model is normalized over the time span of
the data. Adding a background B to this simulates
a periodic variation on top of a constant extinction
probability (model PB).

QPM: A quasi-periodic model in which the phase is a
sinusoid with amplitude AQ, period TQ and phase θ
(it becomes the same as the PNB model if AQ = 0).

SP: A monotonically increasing or decreasing nonlinear
trend in the extinction PDF using a sigmoidal func-
tion characterized by the steepness of the slope, λ
and the center of the slope, t0. In the limit that
λ becomes zero the model becomes a step function
at t0, and in the limit of very large λ becomes the
uniform model.

SSP: Combination of SP and PNB.

OM(P)/SOM(P): The orbital/semi-orbital model
with/without spiral arms, defined in Section 4.5.

3.4. Numerical calculation of the evidence

The integral in Eqn. 1 is a multidimensional integral
over the parameter space, and cannot be calculated ana-
lytically. As in Bailer-Jones (2011a), we estimate it using
a Monte Carlo method, by drawing model parameters at
random from the prior distribution and calculating the
likelihood at each. If the set of N parameter draws is



7

Table 2
The mathematical form of the time series models and their corresponding parameters. Time t increases into the past and Pu(t|θ,M) is

the unnormalized extinction probability density predicted by the model.

model name Pu(t|θ,M) parameters

Uniform 1 none

RNB/RB
∑N

n=1 N (t;µn, σ)+B σ, N , B
PNB/PB 1/2{cos[2π(t/T + β)] + 1}+B T , β, B
QPM 1/2{cos[2πt/T + AQ cos(2πt/TQ) + β] + 1} T , β, AQ, TQ

SP [1 + e(t−t0)/λ]−1 λ, t0
SSP PNB+SP T , β, λ, t0
OM(P)/SOM(P) n(−→r⊙(t),−→v⊙(t)) −→r⊙(t = 0), −→v⊙(t = 0)

Table 3
Range of parameters adopted in the model prior parameter distributions. Except for OM(P)/SOM(P), a uniform prior for all parameters

for all models is adopted which is constant inside the range shown, and zero outside. The prior PDF of parameters in the
OM(P)/SOM(P) model is Gaussian and specified by the uncertainties in the initial conditions.

model name range of prior

Uniform None
RNB/RB σ = 10 Myr, N ∈ {5, 18}, B ∈ {0, 1√

2πσ
}

PNB/PB 10 < T < 100, 0 < β < 2π, B ∈ [0, 1]
QPM 10 < T < 100, 0 < β < 2π, 0 < AQ < 0.5, 200 < TQ < 500
SP −100 < λ < 100, 100 < t0 < 500
SSP 10 < T < 100, 0 < β < 2π, −100 < λ < 100, 100 < t0 < 500
OM(P)/SOM(P) initial conditions (see Table 5)

denoted {θ}, then Eqn. 1 can be approximated as the
average likelihood

P (D|M) ≃ 1

N

∑

θ

P (D|θ,M) . (8)

In the following simulations we adopt N =10 000 unless
noted otherwise.

4. MODEL OF THE SOLAR ORBIT

We now reconstruct the orbit of the Sun around the
Galaxy over the past 550Myr. This is done by integrat-
ing the Sun’s path back in time through a fixed gravita-
tional potential, described in Section 4.1. (The dynamics
are reversible because only gravity acts; energy is not dis-
sipated.) It has often been assumed that the solar orbit is
periodic with respect to crossings of the Galactic plane
and/or spiral arms; we investigate this numerically in
Section 4.4. The stellar mass distribution corresponding
to the potential gives the local stellar density which the
Sun experiences in its orbit. In Section 4.5 we use this
to derive the variation in the expected extinction rate.

4.1. The Galactic potential

We adopt an analytic Galaxy potential, ΦG(R, z) (de-
scribed in cylindrical coordinates), comprising three com-
ponents

ΦG = Φb +Φh +Φd . (9)

The first two components are spherically symmetric dis-
tributions which represent the bulge and halo using
Plummer’s model (Plummer 1911)

Φb,h = − G Mb,h
√

R2 + z2 + b2b,h

(10)

Table 4
The parameters of Galactic potential model (from

Garćıa-Sánchez et al. (2001))

component parameter value
Bulge Mb = 1.3955 × 1010 M⊙

bb = 0.35 kpc
Halo Mh = 6.9766× 1011 M⊙

bh = 24.0 kpc
Disk Md = 7.9080× 1010 M⊙

ad = 3.55 kpc
bd = 0.25 kpc

and the third is an axisymmetric disk according to
Miyamoto & Nagai (1975)

Φd = − G Md
√

R2 + (ad +
√

z2 + b2d)
2

. (11)

In Eqn. 10 and 11 R is the galactocentric radius and z is
the distance from the Galactic midplane. Mb, Mh, Md

are the mass of bulge, halo and disk, respectively. ad and
bd are the scale length and height (respectively) of the
disk, and bd, bh are the scale lengths of the bulge and halo
respectively. We adopt the numerical values for these as
given in Table 4 (see (Garćıa-Sánchez et al. 2001)). In
addition to the these three components, we introduce
into some of the models a time-dependent potential due
to the Galactic spiral arms, denoted Φs(R, φ, z, t). It is
defined in below in Section 4.3.

There is, of course, significant uncertainty not only in
the value of the parameters of the potential, but also in
the functional form of our model. It is no doubt a sim-
plification of the true potential of the Galaxy, so specific
numerical values of quantities such as orbital periods and
amplitudes inferred should not be interpreted too liter-
ally. Below we investigate the sensitivity of our model
comparison to changes in the potential.
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4.2. Orbit calculation

To calculate the motion of a body through the po-
tential from given initial conditions, we solve Newton’s
equations of motion, which in cylindrical coordinates are

R̈−Rφ̇2=−∂Φ

∂R

R2φ̈+ 2RṘφ̇=−∂Φ

∂φ

z̈=−∂Φ

∂z
(12)

We solve these equations by numerical integration us-
ing the lsoda method implemented in the R package
deSolve, with a time step of 0.1Myr.
The initial conditions are the current phase space co-

ordinates (three spatial and three velocity coordinates)
of the Sun. These are derived from observations with
a finite accuracy, so our initial conditions are Gaussian
distributions, with mean equal to the estimated coor-
dinate and standard deviation equal to its uncertainty
(Table 5). In order to calculate an orbit we draw the
initial conditions at random from these prior distribu-
tions, and a large number of draws gives us a sampling
of orbits which will be used later (e.g. in the evidence
calculations).
We derive our initial conditions from a number of

sources: The distance to the Galactic centre comes from
astrometric and spectroscopic observations of the stars
near the black hole of the Galaxy (Eisenhauer et al.
2003). The Sun’s displacement from the galactic plane is
calculated from the photometric observations of classical
Cepheids by Majaess et al. (2009). The Sun’s velocity
is calculated from Hipparcos data by Dehnen & Binney
(1998).

4.3. Spiral arms

The model for the spiral arms is described by their
geometry and their gravitational potential. However, for
the arm crossing periodicity test in the next section we
ignore mass of the spiral arms when calculating the solar
orbit and only consider their location. Likewise, in one
of the class of variants of the orbital model, OM and
SOM (defined later), we ignore the arms entirely (for
both the orbit and stellar density calculations). This is
done so that we can see the additional affect of the arms,
the form and mass of which are poorly determined by
current observations.
The geometric model comprises two logarithmic spi-

ral arms, the positions of which in circular coordinates,
(R, φ), are given by

φs(R) = α log(R/Rmin) + φmin, (13)

where α is a winding constant, Rmin is the inner radius
and φmin is the azimuth at that inner radius. The radius
of the spiral arm ranges from Rmin to Rmax. Of the
various arm models offered by Wainscoat et al. (1992),
we selected the main two spiral arms, 1 and 1′, with φmin

given by Vanhollebeke et al. (2009) and other parameters
given by Wainscoat et al. (1992) (see Table 6). Their
location in the plane of the Galaxy is shown in the left
panel of Figure 3. The arms rotate rigidly with constant

angular velocity (pattern speed) of Ωp = 20km s−1 kpc−1

(Martos et al. 2004; Drimmel 2000).
The gravitational potential of the arms is described

by the (first term of the) analytic potential of Eqn. 8 of
Cox & Gómez (2002). This is

Φs = − 4πGH
K1D1

ρ0e
−

R−r0
Rs ×

cos(N [φ− φs(R, t)])
[

sech
(

K1z
β1

)]β1

, (14)

where

K1=
N

R sin(α)
,

β1=K1H(1 + 0.4K1H),

D1=
1 +K1H + 0.3(K1H)2

1 + 0.3K1H
,

φs(R, t)=φs(R) + Ωpt .

The amplitude of the spiral density distribution is

ρA(R, z) = ρ0e
−

R−r0
Rs sech2(z/H) , (15)

where Rs is the radial length of the drop-off in density
amplitude of the arms, ρ0 is the midplane arm density
at fiducial radius r0, and H the scale height of the spi-
ral density. This modulated by a sinusoidal pattern in
φ, to give the overall density which corresponds approx-
imately4 to the above potential

ρs(R, φ, z, t) = ρA(R, z) cos[N(φ− φs(R, t))], (16)

where N is the number of arms and φs(R) is given in
Eqn. 13. The values of the relevant parameters are given
in Table 6.

4.4. Periodicity test

In previous studies of the impact of astronomical phe-
nomena on the terrestrial biosphere, it has frequently
been assumed that the solar motion shows strict period-
icities in its motion perpendicular to the Galactic plane,
and sometimes also with respect to spiral arm crossings.
We investigate this here using our numerical model.
For each orbit k, we calculate the intervals between

successive crossings, {∆ti}k, (separately for midplane
and spiral arm crossings), where i indexes the crossing.
We then calculate the sample mean and sample standard
deviation of these intervals for each orbit

∆tk =
1

Nk − 1

Nk−1
∑

i=1

∆tik (17)

σk =

√

√

√

√

1

Nk − 2

Nk−1
∑

i=1

(∆tik −∆tk)2 , (18)

where Nk is the number of crossings in the kth orbit. To
assess the periodicity of the crossing intervals, we define

4 The density corresponding strictly to the potential in Eqn. 14 is
rather messy, and is not necessary for this work. The approximate
density in Eqn. 16 is accurate enough for our purposes for small
H/r and z/H not too large (Cox & Gómez 2002).
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Table 5
The current phase space coordinates of the Sun, represented as Gaussian distributions, and used as the initial conditions in our orbital

model

R/kpc VR/kpc Myr−1 φ/rad φ̇/rad Myr−1 z/kpc Vz /kpc Myr−1

mean 8.0 -0.01 0 0.0275 0.026 0.00717
standard deviation 0.5 0.00036 0 0.003 0.003 0.00038

Table 6
The parameters of the geometric and potential model for the spiral arms. The parameters of the potential apply to both arms.

geometric parameters
arm α Rmin/kpc φmin/rad extent/kpc

1 4.25 3.48 0.26 6.0
1′ 4.25 3.48 3.40 6.0

potential parameters

N ρ0/M⊙ kpc−3 r0/kpc Rs/kpc H/kpc

2 2.5× 107 8 7 0.18
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Figure 3. The solar orbit in the Galactic plane (left, thin lines) and perpendicular to the plane (right). The orbit in the left panel is in a
reference frame rotating with the spiral arms (shown in thick lines).

the degree of aperiodicity as

ak = σk/∆tk . (19)

An orbit with a = 0 is strictly periodic.
We investigated the variation of the aperiodicity of the

solar orbit with the six parameters (initial conditions).
This parameter space is too large to report on extensively
here, but we find that the aperiodicity is most sensitive to
R(t = 0) and φ̇(t = 0). In the following we vary these ini-
tial conditions individually, by drawing 104 samples from
the corresponding initial condition distribution. (Larger
sample sizes did not alter the results significantly) We
simulate the solar orbits using the arm-free potential,
ΦG.

4.4.1. Midplane crossings

Some earlier studies claimed that Galactic midplane
crossings trigger increases in terrestrial extinction due
to an enhanced gamma ray or cosmic ray flux or due
to larger perturbation of the Oort cloud. These are
directly related to the increased stellar density and in-
creased occurrence of star forming regions. The larger
tidal forces are postulated to enhance the disruption of

the Oort cloud (Rampino & Stothers 2000; Matese et al.
1995), and the higher density of massive stars – and thus
high energy radiation as well as increased supernova rate
– raise the average flux the Earth is exposed to. The
periodicity of the Sun’s vertical motion – not least its
period, phase and the assumed stability of this period –
are central to these claims. We examine these using our
model.
The results of varying just the initial galactocentric

radius of the Sun, R(t = 0), are shown in Figure 4. We
see in the top-right panel that about 90% orbits have an
aperiodicity less than 0.1. In the lower two panels we see
how a varies with the value of the initial condition and
with the average crossing interval.
The aperiodicity is 0.002 (nearly strict periodicity) at

∆t = 61.8Myr. This corresponds to a 1:1 resonance be-
tween the vertical motion and the radial motion. Its
value is close to a period in the biodiversity data of
62 ± 3Myr claimed by Rohde & Muller (2005). Little
should be read into this coincidence, however, as there
is no good (i.e. independent) reason to select the spe-
cific initial condition that leads to this period over any
other. Moreover, changing the parameters of the Galac-
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Figure 4. Periodicity test of midplane crossings varying just the current galactocentric radius of the Sun, R(t = 0). Top left: distribution
of this initial condition in the simulations (it has a Gaussian distribution with parameters given in Table 5). Top right: cumulative
probability of the aperiodicity parameter for the resulting orbits. Bottom left: the variation of aperiodicity with R(t = 0). Bottom right:

the variation of aperiodicity with the average crossing interval, ∆tk .

tic potential – which is not very well known – changes
this period. (For example, if we increase the mass of
the Galactic halo the values of ∆t are decreased.) The
other minimum in the aperiodicity in the bottom pan-
els is 0.02 at ∆t = 100.2Myr. This corresponds to an
approximately circular orbit in the midplane. If we set
VR(t = 0) = 0, Vz(t = 0) = 0 and z = 0, this solar orbit
would be strictly circular.
The cumulative curve (top-right panel of Figure 4)

makes a sharp turn at a′ = 0.1. This is because of
a sudden decrease in the number of orbits with large
aperiodicites. Similarly, the discontinuities in the lower
panels are caused by changes in the (small) number of
discrete plane crossings which occur for different aperi-
odicity ranges.
If we now vary the initial condition φ̇(t = 0) instead,

the periodicity test gives very similar results: we find
a nearly strict periodicity at ∆t = 60Myr and another
minimum in the aperiodicity at about 100Myr. That
means the nearly strict periodicity is mainly determined

by a combination of R(t = 0) and φ̇(t = 0).
In summary, we see that the majority of the simulated

orbits (90%) are quite close to periodic (a ≤ 0.1) in their
motion vertical to the midplane, although strict period-
icity essentially never occurs.

4.4.2. Spiral arm crossings

Regarding spiral arms as regions of increased star for-
mation activity and stellar density, the mechanisms of
mass extinction considered for midplane crossing could
likewise be applied to spiral arm crossings, and have been
by some authors (Leitch & Vasisht 1998; Gies & Helsel
2005). However, such studies have over-simplified the
solar motion by failing to take into account the consider-
able uncertainties in the current phase space coordinates
of the Sun and thus in its plausible orbits. Some stud-
ies have even claimed a connection between spiral arm
crossings and the terrestrial biosphere after having fit the
solar motion to the geological data, but such reasoning
is clearly circular.
We examine here the periodicity of spiral arm crossings
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(although we note that some studies in the literature
claiming a spiral arm-extinction link just consider the
crossing times and do not claim a periodic crossing). The
crossing intervals are longer than with the midplane, so
we only include in our analyses models in which there
are at least three arm crossings. We assume that the
arms have indefinite vertical extent, so that a crossing
on the x–y plane is always a true encounter. In reality
the Sun might pass over or under the arms, thus reducing
the overall relevance of spiral arm crossings to terrestrial
extinction.
Figure 5 shows the result of this analysis for the 7 407

orbits (out of the original sample of 10 000) which exhibit
at least three arm crossings. The cumulative probabil-
ity (top-right panel) shows that about 40% of the orbits
have an aperiodicity larger than 0.2. In other words, it is
not very likely that the solar orbit and spiral arms are so
tuned to give periodic crossings. The lower two graphs
show how a varies with R(t = 0) and ∆tk. The numer-
ous gaps in these plots are a consequence of the fact that
not all orbits for certain ranges of R(t = 0) had at least
three arm crossings, and so were removed from the anal-
ysis. We see, therefore, that the crossing interval is very
sensitive to R(t = 0).
Note that we have neglected the mass of the arms in

the orbital calculations. When we include it the values
of aperiodicity increase and there is an even less clear
dependence of a on R(t = 0) or ∆tk.
In summary, we find it unlikely that spiral arm cross-

ings are even close to periodic. If the pattern speed of the
spiral arms has not been constant in the past 550Myr,
or if the pattern itself has not been stable, then this con-
clusion is strengthened further.

4.5. Orbital model

4.5.1. Derivation of the extinction rate from the stellar
density variation

As outlined in Section 1, various astronomical mech-
anisms for biological extinction have been identified,
including comet impacts (from Oort cloud perturba-
tion), gamma rays (from SNe or GRBs), and cos-
mic rays (from SN remnants) (Ellis & Schramm 1995;
Garćıa-Sánchez et al. 2001; Gies & Helsel 2005). The in-
tensity of all of these depends on the local stellar density.
If we consider a general mechanism involving flux from
nearby stars, then the flux from a single star is propor-
tional to f/d2, where f is the relevant surface flux and
d the distance. The sum of this over the whole relevant
volume of space around the Sun is proportional to the
total intensity and thus the extinction probability (per
unit time).
Let us assume that the extinction rate, E, is linearly

proportional to the flux, and that the number density of
relevant stars is proportional to the total stellar number
density (stars per unit volume), n. Because the den-
sity of spiral arms is much less than the density of the
other components, we consider at first only the time-
independent density arising from halo, disk and bulge.
The density is calculated from the corresponding poten-
tial (defined in Section 4.1) using Poisson’s equation.
In an axisymmetric cylindrical coordinate system, the

extinction rate at the Sun is then

E(R⊙, z⊙)=C

∫ ∫

n(R, z)

d2
RdRdz

=C

∫ ∫

n(R, z)

(R−R⊙)2 + (z − z⊙)2
RdRdz,

(20)

where R and z are the galactocentric radius and height
above the midplane, respectively, for some star, and R⊙

and z⊙ are the corresponding (time-varying) coordinates
of the Sun, and C is a constant. Notice that the stellar
number density, n, is proportional to the corresponding
stellar density, ρ. Defining the distance from a star to
the Sun as r ≡ R − R⊙ and Z ≡ z − z⊙, the extinction
rate is

E(R⊙, z⊙)=C

∫ ∫

n(R⊙ + r, z⊙ + Z)

r2 + Z2
(R⊙ + r)drdZ .

(21)

The flux from a star falls off as 1/d2, but we can trun-
cate this integral at some upper distance because at some
point the flux is too weak to influence the terrestrial bio-
sphere. We take dth = 50pc as an upper limit.5 This
is much smaller than the scale length of the disk and
comparable to the scale height of the disk (see Table 4),
so we can approximate n(R⊙ + r, z⊙ + Z)(R⊙ + r) by
n(R⊙, z⊙ + Z)R⊙. The integral then becomes

E(R⊙, z⊙) ≃ CR⊙

∫ dth

−dth

∫ dth

−dth

n(R⊙, z⊙ + Z)

r2 + Z2
drdZ .

(22)
Integrating over r gives

E(R⊙, z⊙) ≃ 2CR⊙

∫ dth

−dth

n(R⊙, Z+z⊙)
arctan(dth/Z)

Z
dZ .

(23)

The geometric factor arctan(dth/Z)
Z drops close to zero at

about Z =25pc, and does so much more rapidly than the
stellar density term, which follows the vertical profile of
the disk (which has a much larger scale height of 250pc).
Thus to a reasonable degree of approximation we can set
n(R⊙, Z+z⊙) ≃ n(R⊙, z⊙) in this integral. The integral
is then just over the geometric factor, which gives some
constant (dependent on dth, but of no further interest).
Thus we are left with

E(R⊙, z⊙) ≃ C′R⊙n(R⊙, z⊙), (24)

for some constant C′. For the solar motion, the relative
variation of R⊙ is less than that of n(R⊙, z⊙), so we have

E(R⊙, z⊙) ∝ n(R⊙, z⊙) . (25)

In other words, the extinction rate is just proportional
to the stellar density at the location of the Sun. The
approximations in Eqns. 22–25 still hold when we in-
clude the low density spiral arms defined in Section 4.3,

5 In the case of SNe, Ellis & Schramm (1995) conclude that only
those which come within 10 pc of the Sun would have a significant
impact on terrestrial life. GRBs up to 1 kpc or even more could still
have an effect on the Earth, but we ignore these because the GRB
rate (at low redshifts) is comparatively low (e.g. Domainko et al.
(2013)).
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Figure 5. As Figure 4, but now for the spiral arm crossings.

in which case we must also introduce the explicit depen-
dence on azimuth and time

E(R⊙, φ⊙, z⊙, t) ∝ n(R⊙, φ⊙, z⊙, t) . (26)

In the above model we assumed that the extinction
rate is proportional to d−2, i.e. the influence falls off like
a flux on the surface of a sphere. We could generalize
this dependence to be d−k/2 for k ≥ 0 in order to reflect
other mechanisms, e.g. tidal effects.
In order to test the validity of the above approxima-

tions, we compare in Figure 6 the extinction rate as given
by Eqn. 20 (by numerical integration) with the stellar
number density n(R⊙, z⊙). We plot over ranges of R⊙

from 5kpc to 10 kpc and z⊙ from −0.5kpc to 0.5 kpc,
in accordance with the ranges covered by the simulated
solar orbits. We normalize the extinction rate (and the
stellar density) by setting its integral over R⊙ and z⊙ to
be unity. In the upper row of Figure 6, the difference be-
tween the stellar density and the extinction rate reaches
a maximum in the midplane (z⊙ = 0); this is on account
of the relatively large density gradient at z⊙ = 0. The
maximum difference is only about 10% of the peak value
of stellar density for all values of k. In the lower row, the

largest difference is at the lower limit of R⊙. Note that
the value of k has very little impact.
In practice, most of the simulated orbits spend most

of their time in the region 7 < R⊙/kpc < 9 and −0.3 <
z⊙/kpc < 0.3, where the differences between local stellar
density and extinction rate variation are even smaller.
Thus to within a few percent, the stellar density at the
Sun is a good predictor of the extinction rate. The time
variation of this density is the time series model forms
the basis for what we refer to as the “orbital models”,
the forms of which we now define.

4.5.2. Definition of OM(P) and SOM(P)

The orbital model “OM” is the orbital model which
does not include the spiral arm at all, neither in the
gravitational potential (for calculation of the orbits) nor
in the stellar density (for the extinction rate calculation).
The orbital model OMP does include the spiral arm in
both senses. Thus both OM and OMP are internally
self-consistent.
Once normalized, E(t) is just the quantity P (t|θ,M)

in Section 3.3 (and it is normalized to give unit inte-
gral over the span of the data). The parameters of OM
and OMP are the initial conditions of the orbit, and the
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Figure 6. Comparison of the extinction rate calculated numerically with the stellar density at the position of the Sun. The top row shows
the variation as a function of z⊙ with R⊙ fixed to 8 kpc. The bottom row show the variation as a function of R⊙ with z⊙ fixed to 26 pc.
The columns from left to right are for k = 0, 2, 4 in the model for the dependence of extinction rate with distance.

corresponding priors are the Gaussian distributions sum-
marized in Table 5. Thus one orbit calculated from one
draw of the initial conditions allows us to calculate one
likelihood for these models (for given data set). Repeat-
ing this and averaging the resulting likelihoods gives the
evidence for that orbital model (see Section 3.4).
For both of these models we consider four variations,

labelled 1–4, according to which initial conditions we
vary (and therefore sample over to build up the set of
orbits).
In addition to these models, we define the“semi-orbital

model”, SOM. This is derived from the OM simply by
subtracting from the predicted extinction rate a constant
value, h, and setting all resulting negative values to zero.
Here we simply set h to be the minimum value of the
extinction rate (see Figure 7). This is intended to model
the situation in which the flux causing the extinction
must rise above some threshold before it has an effect.
(We might consider this as an adaption of life to the ex-
traterrestrial flux background.) In analogy to OM, SOM
excludes the spiral arm. SOMP is SOM with the spiral
arm potential and density included. Once again we will
consider four varieties according to which initial condi-
tions are varied.

5. RESULTS

5.1. Evidences

We now calculate the Bayesian evidence (Eqn. 1) for
the various models for each data set. This is done by sam-
pling from prior probability distributions of the model
parameters (P (θ|M), Table 3), calculating the likelihood
(Eqn. 4 for discrete time series, Eqn. 7 for continuous

time series) and then averaging these for that model and
data set Eqn. 8.
To calculate the evidences for RNB and PNB models

for the B5 and B18 data sets, we adopt a Monte Carlo
sample size of 106. In all other cases we use a sample
size of 104. Larger sample sizes did not alter the esti-
mated evidence significantly.6 This sample size is given
according to the sensitivity test of the evidence to the
sample size for all models and all data sets. This test
shows that the evidence estimated from 104 draws in the
prior distribution is close to the real evidence when there
is a background either in the model or in the data set.
As the absolute value of the evidence is not of interest,

we report the ratio of evidence, the Bayes factor. Here we
report Bayes factors with respect to the Uniform model.
We regard a model as being significantly better than an-
other when its evidence exceeds that of the other by a
factor of ten (Jeffreys 1961; Kass & Raftery 1995). Note
that it is only meaningful to compare evidences – and
therefore Bayes factors – for a fixed data set.
The results are shown in Table 7. For the reference

models we evaluate the evidence by sampling over all
their model parameters, but in the case of OM and SOM
we sample over just some of the parameters (initial con-
ditions), keeping the others fixed, in order to investigate
the impact of the different parameters. As shown in Sec-
tion 4.4, the periodicity of solar orbit is most sensitive to
the initial conditions R(t = 0) and φ̇(t = 0). We there-

6 For all the data sets, the standard error of the Monte Carlo
estimates of the evidence is < 1% for OM models, < 3% for SOM
and other models, and < 25% for RNB and (S)OMP models.
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Figure 7. The orbital model (OM) and semi-orbital model (SOM). The left panel shows the variation of the local stellar density – and
thus the extinction probability per unit time – in one particular orbit calculated from OM. The horizontal dashed line is a threshold, h, for
truncating the stellar density to a minimum level, which gives rise to the extinction probability per unit time plotted in the right panel.

Table 7
Bayes factors and maximum likelihood ratios of the various time series models (rows) relative to the Uniform model for the various data

sets (columns). OM(P)1–4 refer to the OM(P) model in which different initial conditions are varied: R(t = 0), φ(̇t = 0),

{R(t = 0), φ̇(t = 0)}, {R(t = 0), VR(t = 0), φ̇(t = 0), Vz(t = 0)}, respectively, and likewise for the SOM(P)1–4 models. The other initial
conditions are kept fixed. The RB and RNB models are intrinsically discrete, so are not applied to the two continuous data sets.

Bayes factor (BF) Maximum likelihood ratio (MLR)
Model B5 B18 RM A08 B5 B18 RM A08
PNB 0.97 0.62 0.98 0.87 22 255 1.2 1.1
PB 1.0 0.80 0.98 0.87 3.5 45 1.1 0.99
QPM 0.99 0.85 0.98 0.87 6.8 35 1.1 0.98
RNB 0.041 0.00050 – – 1153 16 – –
RB 0.85 0.40 – – 9.0 8.4 – –
SP 0.28 0.019 1.02 0.88 2.7 0.36 2.1 1.3
SSP 0.73 0.18 0.99 0.87 8.6 81 1.3 1.2
OM1 1.4 0.74 0.99 0.88 4.6 2.4 1.1 1.0
OM2 1.4 0.72 0.99 0.89 4.9 2.2 1.2 1.0
OM3 1.2 0.63 0.99 0.88 4.9 2.6 1.3 1.1
OM4 1.2 0.65 0.99 0.88 5.0 3.0 1.2 1.1
OMP1 0.18 0.014 0.93 0.88 6.3 0.48 5.9 4.4
OMP4 0.14 0.022 0.93 0.83 20 6.1 6.0 5.0
SOM1 1.3 0.051 1.0 0.90 11 0.34 1.2 1.2
SOM2 0.85 0.037 1.0 0.91 5.9 0.33 1.3 1.2
SOM3 0.99 0.032 1.0 0.89 24 0.67 1.4 1.2
SOM4 1.0 0.032 1.0 0.89 28 0.70 1.3 1.3
SOMP1 0.11 0.00013 0.94 0.88 3.5 0.0067 5.9 4.4
SOMP4 0.10 0.0012 0.94 0.83 20 1.8 6.0 5.1

fore calculate the evidence for the OM (and SOM) models
with four different sets of initial conditions being varied:

R(t = 0) only; φ(̇t = 0) only; {R(t = 0) and φ̇(t = 0)};
{R(t = 0), VR(t = 0), φ̇(t = 0), and Vz(t = 0)}. In all
cases we fix φ(t = 0) and z(t = 0), the former because it
has no impact on the solar motion in this axisymmetric
potential, and the latter because the uncertainty in the
current z position of the Sun has a limited impact on the
subsequent orbit. To assess the effect of the spiral arm
perturbation on the BFs, we have selected four perturbed
orbital models, OMP1, OMP4, SOMP1 and SOMP4, to
compare with corresponding unperturbed orbital models.
For the B5 data set, the BFs of all time series models

relative to the Uniform model are less than 10. Thus

none of these models are a significantly better explana-
tion of the data. One model, RNB, has a Bayes factor
less than 0.1, indicating that we can discount this one as
being an unlikely explanation. Given that the Uniform
model is the simplest model of the set, the principle of
parsimony suggests we should be satisfied with it as ex-
planation. This does not deny the possibility that some
other model shows significantly higher evidence. After
all, we can only ever make claims about models which
we explicitly test.
The B18 data set includes more extinction events than

the B5 data set, and not surprisingly it discriminates
more between the models (the Bayes factors show a larger
spread). (These results are also shown graphically in the
upper panel of Figure 8.) The OM models are favoured
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Figure 8. Results for the B18 data sets. The upper panel shows
the log (base 10) Bayes factor of the various models relative to the
Uniform model. The lower pannel shows the log (base 10) of the
maximum likelihood ratio of various models relative to the Uniform
model.

somewhat more than the other models – e.g. the BF
of OM3 to SP is 0.63/0.019 = 33 – although again no
model is favoured significantly more than the Uniform
model. In contrast, several models are significantly disfa-
vored (RNB, SP, OMP1, OMP4, SOM1, SOM2, SOMP1,
SOMP4). In particular, the perturbed orbital models, in-
cluding OMP1, OMP4, SOMP1 and SOMP4, are less fa-
vored by the data than their corresponding unperturbed
orbital models. All the other perturbed orbital models
(not listed in Table 7) also have lower BFs than the un-
perturbed orbital models.
For the two continuous time series, RM and A08, the

difference between the evidences of all of the models is
not significant.7 Our broad conclusion is that no model
significantly outperforms the Uniform model on any of
the data sets. On the contrary, a few can be “rejected” on
the ground of a significantly lower evidence. Recall that

7 As the RNB and RB models are obviously conceptually inap-
propriate models for continuous data sets, we do not apply them to
the A08 or RM data sets, so these values are missing from Table 7.

all of these models are predicting the extinction prob-
ability (per unit time). In terms of the discrete data
sets, the Uniform model just means that the mass ex-
tinction events occur at random in time. We find this
to be no less probable than a periodic or quasi-periodic
variation of the probability, or a monotonic trend in the
probability, etc. In terms of the continuous data sets,
we obviously do not believe that the Uniform model is
a good explanation of the clearly apparent variations in
the extinction rate (see Figure 1). But the analysis does
tell us that this is no worse an explanation than the more
complex models of the variation considered, such as peri-
odic, orbital-model based etc. Clearly there must be yet
other models which could explain the data even better.
This may explain why previous authors have found an
apparent periodicity in the data: the periodic model can
explain the data to some degree, but actually no better
than simpler models.

5.2. Likelihood distribution

We have seen that the evidence hardly discriminates
between any of the models on the continuous data sets,
and only between some of them on the discrete data sets.
(This is by no means inevitable. In other problems the
evidence can vary enormously between models.) This
means that, on average over their parameter space, the
models differ little in their predictions. It is nonethe-
less interesting to see how the likelihood varies over the
parameter space. (We would do this in particular to
find the best fitting parameters, although these are only
meaningful if the overall model has been identified as the
best explanation of the data.) We focus here mainly on
the PNB and OM models for the B18 data. We again
normalize the likelihood for a model by dividing it by the
likelihood of the Uniform model to form the likelihood
ratio. As the latter model has no parameters, it is likeli-
hood constant and equal to its evidence. The maximum
value of the likelihood ratio we denote as MLR.
Figure 9 shows how the likelihood varies over the two-

dimensional space formed by the two parameters, pe-
riod and phase, of the PNB model. There is significant
variation. We see numerous local maxima, the largest
likelihoods being around {T/Myr, β/rad} = {60, 4.5}.
However, these maxima are rather narrow, so once the
(much lower) likelihood in the other (equally plausible)
regions are taken into account, the overall evidence for
the model is not particularly high. If we are interested
in the variation of likelihood with just the period, then
we can marginalize this diagram over phase, and plot
with respect to period, thereby forming a (Bayesian) pe-
riodogram (lower panel). We see a clear peak around
60Myr. This is coincident with the period of 62± 3Myr
identified by Rohde & Muller (2005). It is tempting (but
incorrect) to associate this peak value of the likelihood
with the periodic model as a whole, and use it to claim a
larger evidence for the periodic model. Certainly there is
a degree of arbitrariness in the prior parameter distribu-
tion – in this case a uniform distribution – and narrowing
this range around this peak would clearly increase the ev-
idence. For example, if we truncate the period range from
its current value of [10, 100]Myr to [50, 80]Myr, then the
Bayes factor relative to the Uniform model increases from
0.62 to 1.5. This is a rather modest increase, but we
could increase it to a significantly high value with an
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Figure 9. Likelihood distribution for the PNB model on the B18
data set as a function of period and phase (upper panel) and period
only (lower pannel). In both panels we show the likelihood ratio
of the PNB to the Uniform model, on the left as log (base 10) on
a color scale.

even narrower prior. However, we may not use the data
to find the best fitting parameters and then claim that we
should only consider the model near to these. We would
need some other reasoning or independent data for mak-
ing such a selection. (The Rohde & Muller (2005) time
series is not independent of B18, because both are based
on the same paleontological data.) We do not see how, a
priori, we could limit the plausible periods of periodicity
to something as narrow as 50–80Myr, let alone the much
narrower range required to favour PNB significantly over
other models. In the extreme limit of an infinitesimal re-
gion around the maximum likelihood, we end up doing
model comparison using the maximum likelihood. Just
out of interest, these values are shown in Table 7 and
plotted in Figure 8. If we were to use this (incorrect)
metric, then PNB and some of its variants have signif-
icantly higher likelihood than the Uniform model and
several of the other models (although barely more than
a factor of ten above the random model, RB). Another
way of seeing why this is the wrong approach was already

discussed in Section 3.1: by focusing on the best fits we
simply favour the more complex model. We could always
define a more flexible model and so fit even better.
We labour this point because many of the claims for

a periodicity in biodiversity data have made use of a
maximum likelihood approach (of which χ2 is a special
case) or something equivalent. We must instead use the
evidence for model comparison. (Maximum likelihood
may be used for estimating the best parameters once
we’ve established we have the best model.) If the pe-
riodic model were in fact the true one, then of course
only one period and phase would be true. In that case
the likelihood around these values would be so high as to
result in a large evidence even when averaging over the
broader parameter space (see simulations in Section 4.1
of Bailer-Jones (2011a) for a demonstration).
Incidentally, the fact that we find a dominant period

at all in the B18 data set is actually not that unlikely.
The (Bayesian) periodogram of samples drawn at ran-
dom from a uniform distribution often exhibits a period
which has a likelihood larger than that of the true Uni-
form model (see Section 4.2 of Bailer-Jones (2011a)). In
other words, it is often possible to explain a random data
set with some period, which is just a testament to how
flexible the periodic model is.
Moving on from the periodic model, we show in Fig-

ure 10 the likelihood distribution for OM1 and OM2,
i.e. where we vary the initial conditions R(t = 0) and

φ̇(t = 0), respectively. The likelihood ratio varies by a
factor of up to 104, but its obsolute value is never more
than about two. That is, no value of the intial conditions
gives a model much more favourable than the Uniform
model, whereas as some are far less favourable. If we had
lower uncertainties on these phase space coordinates of
the Sun, then we might be able conclude something more
definitive. For example, if R(t = 0) = 7.5 kpc then the
OM model would be even less favored. We see a similar
degree of variability for the other OM models and data
sets listed in Table 7.
We performed a similar analysis for the other model,

but for the sake of space report only the maximum like-
lihood ratios in Table 7.
For the B5 data set, the RNB model has the highest

maximum likelihood ratio, yet its evidence was the low-
est. This indicates that while one particular instance of
RNB fit the data well, overall it is a poor model.
For the RM and A08 data sets, the evidences are very

similar for all models. This means that the data are
not able to discriminate between these models very well:
they are equally good (or bad). However, the time se-
ries analysis model used here is not best suited to these
data sets. These data can be better interpreted as valued
time series, ones in which we have an extinction magni-
tude attached to each time (both, in general, with un-
certainties), rather than a time variable probability of
extinction. Bailer-Jones (2012) has extended the present
model in order to work with such data sets; the results
of its application to RM and A08 will be reported in a
future publication.
In summary, we find that for none of the data sets is

any model particularly favoured over the simple uniform
one. In particular, there is no evidence to suggest that
the orbital model (with or without a background extinc-
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Figure 10. The variation of initial conditions (left column) and corresponding variation of likelihood ratio relative to the Uniform model
(right column) for the OM model on the B18 data set. The top row is for OM1, in which only R(t = 0) is varied. The bottom row is for

OM2, in which only φ̇(t = 0) is varied.

tion level) is a particularly good explanation of the data.

5.3. Sensitivity test

The evidence is of course sensitive to the choice of prior
parameter distribution, and often we have little reason to
make a very specific choice. Here we test the sensitivity
of the evidence to this, as well as to the parameters of
the Galactic potential used in the orbital models, and to
the age uncertainties for the discrete data sets.
The age uncertainties in the discrete data are taken

into account by the likelihood function. However, it is
often difficult to estimate uncertainties, and we addition-
ally made a plausible, but not unique, translation of the
estimated duration of a stratigraphic substage in order
to estimate uncertainty (which is the standard deviation
of a Gaussian for each event; see Section 2.1). To see
how this affects our results, we scale the age uncertain-
ties in the B18 data set by a constant factor of 1/4, 1/2,
2, and 4. For each of these modified data sets we cal-
culate the evidences for the models (S)OM1–4 and the
Uniform model and recalculate the Bayes factors rela-
tive to the Uniform model. These are plotted in the top

panel of Figure 11: The Bayes factors change by just a
few percent, so a precise age uncertainty is not necessary.
As a second test, we scale in the same way the uncer-

tainties of the initial conditions of the orbital models (i.e.
we change the width of the prior parameter distribution).
The results are shown in the bottom panel of Figure 11.
The change in evidence for any particular model is larger
than in the previous case, but in most cases less than a
factor of 5 (except for the models including the spiral
arms). Moreover, the absolute value of the Bayes factor
remains below one.
Our results are therefore also insensitive to consider-

able imprecision in the uncertainties in the phase space
coordinates of the Sun. This (and the previous conclu-
sion) is also true for the B5 data set.
As a third sensitivity test, we allow the number of sim-

ulated random events, N , and the standard deviation of
each event, σ, in the RNB and RB models to vary. (Ear-
lier we fixed N = 5 when drawing models for the B5
data set and N = 18 for the B18 data set.) For the B18
data set, we find that a larger number of peaks or larger
standard deviation in the RNB model produces a signif-
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Figure 11. Test of the sensitivity of the evidence to variations in
the data age uncertainties and model priors. Both panels plot (on
the vertical axies) the values of the the Bayes factor of the varied
OM(P) and SOM(P) models (relative to the Uniform model) for
the B18 data sets. In the upper panel, the labels of the horizontal
axis (Xsd) denote the varied B18 data sets, where Xsd means that
we have multiplied the age uncertainties of the B18 time series by
X for X=1/4, 1/2, 1, 2, 4. In the lower panel, the labels of the
horizontal axis (Xsd) denote variations of the uncertainties in (i.e.
spread of) the initial conditions, where Xsd means multiplying the
uncertainties of the initial conditions by a factor of X (X=1/4, 1/2,
1, 2, 4). For each value of Xsd we have, for clarity, slightly offset in
the horizontal direction the values for the OM(P) models (square
points) from those for the SOM(P) models (diamond points).

icantly larger Bayes factor (see Table 8), although it is
still below unity. The RB model shows much less sensi-
tivity to N and σ. We similarly recalculate the evidence
for the other models in response to various perturbations
of their priors, as also listed in Table 8. The resulting
Bayes factors do not change by more than a factor of 10
in any case, and often by much less.
Finally, we test the sensitivity to the Bayes factors to

changes in the parameters of the Galaxy model (canon-
ical values listed in Table 4). The results are shown in
Table 9) for the B18 data set. If we double the mass
of the halo, for example, then the evidence for the OM
and SOM models changes by no more than a factor of

Table 8
The Bayes factors (relative to the Uniform model) on the B18
data set for models with priors varied. Each prior is varied

individually (listed in the middle column) with the other fixed at
their canonical values.

models varied prior BF

PNB

none 0.62
50 < T < 80 1.5
10 < T < 200 0.31
10 < T < 400 0.15

PB
none 0.80

B = 1/2 0.88
B = 2 0.97

QPM

none 0.85
0 < AQ < 1/4 0.62
0 < AQ < 1 0.54

100 < TQ < 300 0.61
100 < TQ < 500 0.58

RNB

none 0.00050
σ = 5 Myr 3.7× 10−11

σ = 20 Myr 0.026
N = 9 0.0085
N = 36 0.29

RB

none 0.40
σ = 5 Myr 0.73
σ = 20 Myr 0.25
B = 1

2
√

2πσ
0.13

B = 2√
2πσ

0.45

N=9 0.84
N=36 0.20

SP

none 0.019
−200 < λ < 0 0.070
0 < λ < 200 0.10
10 < t0 < 500 0.047

SSP
none 0.18

10 < T < 200 0.17
−200 < λ < 200 0.37
10 < t0 < 500 0.27

three. Some other changes produce smaller affects, some
larger, but not more than by a factor of five (and note
that a change in a factor of two of the scale lengths is be-
yond what is consistent with observed data). Changes in
the parameters of models which include spiral arms (the
OMP and SOMP models) can produce larger changes in
the Bayes factors. However, most significantly, none of
these changes produce a Bayes factor greater than one.
In other words, none of these changes result in the orbital
model becoming a better explanation for the paleonto-
logical than the Uniform model.
In summary, we find that the evidences for most mod-

els are not particularly sensitive to the age uncertainties,
Galaxy model parameters, or reasonable changes to the
prior parameter distributions.

5.4. Testing the discriminative power

Here we investigate how well our analysis can discrim-
inate between models, by using simulated data which
have been drawn from one of these models. Given suffi-
cient data, such a discrimination will always be possible
to some threshold Bayes factor, but here we are inter-
ested in the case where the data have similar properties
(in particular, sparsity) to the real data we have been
using.
We investigate this by simulating a number of of time

series from the RNB, OM1, and PNB models (which we
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Table 9
The Bayes factors on the B18 data set for orbital models with varied Galaxy parameters.

variation OM1 OM2 OM3 OM4 OMP1 OMP4 SOM1 SOM2 SOM3 SOM4 SOMP1 SOMP4

none 0.74 0.72 0.63 0.65 0.014 0.022 0.051 0.037 0.032 0.032 1.3×10
−4

1.2×10
−3

2Mb 0.58 0.45 0.54 0.55 0.011 0.018 0.043 0.011 0.027 0.028 5.8×10
−4

3.8×10
−4

1/2Mb 0.78 0.85 0.67 0.67 0.0066 0.021 0.040 0.045 0.030 0.030 1.4×10
−4

1.9×10
−3

2bb 0.74 0.72 0.64 0.63 0.0036 0.013 0.055 0.042 0.033 0.032 4.6×10
−5

6.0×10
−4

1/2bb 0.74 0.73 0.65 0.63 0.019 0.025 0.051 0.037 0.032 0.030 2.0×10
−4

1.5×10
−3

2Mh 0.60 0.68 0.57 0.57 0.00014 0.0031 0.080 0.069 0.087 0.083 4.6×10
−6

9.4×10
−5

1/2Mh 0.81 0.68 0.66 0.66 0.011 0.014 0.20 0.059 0.15 0.15 2.3×10
−4

2.8×10
−4

2bh 0.81 0.52 0.66 0.65 0.011 0.0061 0.19 0.027 0.15 0.15 1.1×10
−3

3.5×10
−4

1/2bh 0.073 0.048 0.11 0.11 0.024 0.062 0.0046 0.0012 0.010 0.010 7.5×10
−3

1.4×10
−2

2Md 0.21 0.063 0.33 0.32 0.035 0.058 0.0047 0.0046 0.027 0.024 2.2×10
−5

7.6×10
−4

1/2Md 0.59 0.56 0.49 0.48 0.0031 0.0037 0.0073 0.0018 0.0086 0.0088 3.3×10
−4

9.6×10
−4

2ad 0.86 0.89 0.76 0.76 0.13 0.12 0.10 0.088 0.069 0.067 6.3×10
−3

7.0×10
−3

1/2ad 0.63 0.66 0.55 0.55 0.021 0.019 0.015 0.011 0.022 0.026 2.5×10
−3

9.1×10
−4

2bd 1.1 1.1 0.93 0.93 0.0056 0.020 0.028 0.030 0.027 0.025 1.3×10
−4

4.2×10
−3

1/2bd 0.72 0.87 0.60 0.56 0.00085 0.0073 0.15 0.17 0.10 0.090 1.3×10
−4

1.5×10
−3

will refer to as “generative models” when used in this
way, to distinguish from their use to calculate the evi-
dence on given data). For each generative model, we fix
the parameters to certain values, then sample 18 events
from the resulting P (tj |θ,M) to give a simulated time
series, to which we then attach the measured age uncer-
tainties. We generate ten time series in this way (and
below we average the Bayes factors over these and re-
port that). For the OM1 and PNB generative models we
repeat this at ten different values of the solar initial ra-
dius parameter (OM1) or period parameter (PNB) in the
generative model. (RNB has no parameters). We repeat
the whole process a second time but using simulated age
uncertainties drawn from a log normal distribution with
standard deviation and mean calculated from the mea-
sured age uncertainties. We finally repeat the process a
third time for the OM1 and PNB generative model, but
now drawing data to have the same time sampling as our
continuous data sets (for which age uncertainties are not
used; see section 3.2.2). (We do not do this for the RNB
model as it predicts discrete events.)
For each simulated data set we calculate Bayes fac-

tors for the RNB, OM1, and PNB models relative to the
Uniform model. For the data generated from the RNB
model (with age uncertainties taken from the data), the
Bayes factors for the three models are as follows: 0.18
for RNB; 0.57 for OM1; 0.52 for PNB. (We get almost
identical values when the age uncertainties were drawn
at random). Thus no model – not even the true one –
is favored over the Uniform model (although none is sig-
nificantly rejected either). This is not that surprising,
however, because with only 18 events, and with the evi-
dence effectively averaging the predicted times of events
from the RNB model over all time, the Uniform and RNB
models end up with similar predictive power. This is un-
avoidable, because with the RNB model we cannot decide
in advance where the events are: we must average over
all possibilities.
The results for applying the models to the data gen-

erated from the OM1 and PNB models are shown in
Fig. 12, where the horizontal axis shows how the Bayes
factor varies with the one parameter which is varied in
these generative models. The top row shows the results

for data drawn from the OM1 model, for the discrete
(B18-like) data (left) and the continuous data (right).
We see that the (true) OM1 model is not significantly
favored in either case (Bayes factor always less than ten),
although not disfavored either (Bayes factor more than
0.1). In particular, the continuous data show no discrim-
inative power.
The lower two rows show conceptually the same thing,

but now for data drawn from the PNB model for two dif-
ferent values of the phase parameter (the two rows). Here
we see that, at least for longer periods, the PNB model
is generally correctly identified (on the basis of a large
Bayes factor), when using the discrete data sets. Yet the
continuous data still show no discriminative power.
This difference between discrete and continuous data

sets is not unexpected. In the former, the likelihood is a
product of the likelihood for many events, each of which
is the convolution of the event with the model. In the
latter, the likelihood is just the result of a single convolu-
tion of a continuous model over continuous data. This is
not the best approach for modeling continuous data. A
better choice is the recently developed continuous time
series modeling method described in Bailer-Jones (2012),
which will be used in future work.
Clearly one could perform many more tests with more

simulated time series, varying different parameters in the
generative models and with different permutations of the
values of the fixed parameters. No doubt there are parts
of parameter space where some models are favored over
others, in particular if we adopted more informative pri-
ors. Thus while these results on simulated data give some
check on the discriminative power of the method and
data, they should not be over-interpreted to say anything
too general. Nonetheless, the tests we have done confirm
what we concluded based on the analysis of the real data.
Specifically, while our analysis of the real data does not
allow us to claim evidence in favor of the orbital-based
models, it also cannot rule out these models. This is due
partly to the lack of predictive power of the data, and
partly to the large flexibility (or broad prior parameter
space) of the models. Better constraints on the solar
orbit would help reduce the latter.

6. SUMMARY AND CONCLUSIONS
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Figure 12. The Bayes factors for various models computed on simulated data sets. The horizontal axis in each panel indicates the value
of the parameter in the model used to generate these data sets (all other parameters are kept fixed). The left panels are for discrete data
sets and the right ones for continuous data sets. The top row is for data drawn from the OM1 model, and the bottom two rows for data
drawn from the PNB model (for two different values of that generative model’s phase parameter, π/4 and π/2). The models for which the
Bayes factors have been computed are shown in different symbols defined in the plot: OM1, PNB and RNB. The suffices “fix” and “var”
indicate ages uncertainties for the discrete data either taken from the real data or drawn from a log normal distribution (respectively).

We have used a Bayesian model comparison method
to examine how well different time series models explain
the variation of biodiversity over the Phanerozoic eon
(the past 550Myr). One class of models is derived from
the orbit of the Sun around the Galaxy, which we recon-
structed from a model of the Galactic mass distribution.
Our model comparison takes into account uncertainties
in the data as well as uncertainties in the reconstructed
path of the Sun. We have compared the evidence for this
model with that of various other reference models of no
particular causal origin. All models are stochastic in the
sense that they predict only the time variation of the ex-
tinction probability, rather than the exact magnitude of
the extinction rate or the times of mass extinctions.
As part of this analysis we investigated the properties

of plausible solar orbits (i.e. those consistent with the
accuracy of the present phase space coordinates of the

Sun). We find that the majority of orbits have a motion
perpendicular to the Galactic plane which is not far from
periodic, although a precise period cannot be inferred
due to the uncertainties in the present solar phase space
coordinates as well as the exact mass distribution (gravi-
tational potential) of the Galaxy. Thus any claims which
try to link a variation in geological biodiversity, cratering
or climate records to this solar motion must consider the
motion as quasi-periodic rather than strictly periodic.
In contrast, only about half of the simulated orbits

showed periodic spiral arm crossings, even for a very sim-
ple, rigidly rotation arm model. Indeed, many of the or-
bits did not encounter the spiral arms more than once. It
should be noted that the shape and pattern speed of the
spiral arms is poorly known (and they may not even be
long-lived), so any claims of a causal connection between
spiral arm passages and terrestrial conditions should be
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treated with due skepticism.
We have shown how the evidence (marginal likelihood)

should be used to do model comparison, as opposed to
selecting the model which gives the best single fit. The
reason is that an arbitrarily complex model can always
be tuned to fit the data arbitrarily well, yet that does not
make it a good model. By averaging the likelihood over
the parameter space, the evidence uses the rules of prob-
ability to trade off the quality of the fit with the model
plausibility in a quantitative fashion. Of the models in-
vestigated, we do not claim any one of them to be “true”.
Indeed, no model is exactly true in reality. All we can
hope to do is to find the best of the ones tested so far.
We find that none of the models tested – including

periodic, quasi-periodic and orbital-based – explain the
discrete data sets better than a Uniform model. In other
words, the time distribution of mass extinction events
is consistent with being randomly distributed in time.
There is no need to resort to anything more exotic.
The Uniform model is also no worse than other models

for the continuous data sets. This does not mean that
we believe the extinction rate has been constant over the
Phanerezoic, but rather that none of the other (more
complex) models is significantly better. Assuming the
variations in extinction seen in Figure 1 are true – some-
thing we have no reason to doubt – then this tells us
that there must be other models, not yet tested, which
could explain the data better. This will be investigated
in future work using a model more suited for these types
of time series.
We found in particular that the orbital-based extinc-

tion model is not favored by the data. This conclusion
is robust to changes in the parameters of the Galaxy
model and to the magnitude of the uncertainties of both
the solar phase space coordinates and the ages of the ex-
tinction events. On the other hand, our analysis of sim-
ulated data showed that even if the orbital model were
the true one, our analysis could not have identified it
with either the discrete or (in particular) the continuous
data sets. This ultimately comes down to a combination
of a lack discriminative power in the data, plus a large
flexibility (or prior parameter space) in the models. Of
course, if the orbit of the Sun could be much better de-
termined then it is possible that this model would then
be more – or less – favored by our analysis. We remind
the reader that our orbital model adopted an extinction
mechanism in which the extinction rate is proportional
to the integrated “flux” (of a non-specified type) from
nearby stars. A radical change in this mechanism would
of course correspond to a quite different model, which
could give different results. Thus we do not claim that
the solar motion plays no part in terrestrial extinction,
nor that astronomical mechanisms are irrelevant.
Indeed, it is quite plausible that the biological extinc-

tion rate has been affected by many factors, and so any
attempt to connect them solely to the solar motion, or
indeed to any simple analytic model, is doomed from the
start. We have addressed this to some extent by includ-
ing compound models and the semi-orbital model, but
clearly one could do more. However, given the present
uncertainties of the reconstructed solar orbit, it seems
unlikely that one could draw a strong conclusion on the
positive relevance of the solar orbit on the basis of current
geological data. This, indeed, is the main conclusion of

this work, plus the confirmation that periodic models are
not a good (or necessary) explanation of the biodiversity
variation. There is some hope that, in the future, results
from the Gaia survey of the Galaxy (e.g. Lindegren et al.
(2008)) will improve our knowledge of the Galactic po-
tential, spiral arms and inferred solar orbit, to the extent
that this study can be repeated to give conclusions of
greater certainty.
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